Congruence Closure with Free Variables

J

Haniel Pascal Andrew
Barbosa! Fontaine! Reynolds?

LUniversity of Lorraine, CNRS, Inria, LORIA, Nancy, France
2University of lowa, lowa City, U.S.A.

m afryoshka

TACAS 2017
2017-04-28

SMT solvers are successfully used in a variety of applications, including

many verification tools

Automatic
Jesting

Program
Synthesis

Picture credit: Vijay Ganesh

Congruence Closure with Free Variables (CCFV)

1/17

SMT solvers are successfully used in a variety of applications, including

many verification tools

Automatic
Jesting

Picture credit: Vijay Ganesh

Congruence Closure with Free Variables (CCFV)

1/17

SMT solvers are successfully used in a variety of applications, including

many verification tools

Automatic
Jesting

Picture credit: Vijay Ganesh

Congruence Closure with Free Variables (CCFV)

1/17

SMT solvers are successfully used in a variety of applications, including

many verification tools

SMT

Automatic
Jesting

Picture credit: Vijay Ganesh

Congruence Closure with Free Variables (CCFV)

1/17

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

Congruence Closure with Free Variables (CCFV) 2/17

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

© Too many instances swamp solver

Congruence Closure with Free Variables (CCFV) 2/17

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

© Too many instances swamp solver

Ex.: Vayz. f(x) =~ f(2) = h(y) ~ g(z)
> Select patterns {f(x), h(y), £(2)} or {£(x), h(y), 9()}

Congruence Closure with Free Variables (CCFV) 2/17

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

© Too many instances swamp solver

Ex.: Vayz. f(x) =~ f(2) = h(y) ~ g(z)
> Select patterns {f(x), h(y), £(2)} or {£(x), h(y), 9()}

» A ground model with 10? ground each applications for f, g, h leads
to up to 10° instantiations

Congruence Closure with Free Variables (CCFV) 2/17

Quantifiers in SMT solvers

Quantifiers primarily handled with heuristic instantiation

© Too many instances swamp solver
© Butterfly effect

Ex.: Vayz. f(x) =~ f(2) = h(y) ~ g(z)
> Select patterns {f(x), h(y), F(2)} or {£(x), h(y), g()}

» A ground model with 10? ground each applications for f, g, h leads
to up to 10° instantiations

Congruence Closure with Free Variables (CCFV) 2/17

Quantifiers in SMT solvers

Fast semantically guided instantiation techniques
© Feootrany-instances—swamp—solrer Fewer, necessary instances
© Butterfly-effeet Reduce dependency on heuristics

» Derive instantiations that refute ground model

Congruence Closure with Free Variables (CCFV) 2/17

Problem statement

SMT formula

Quantifier-free SMT solver

Theor
r v SAT solver

Boolean Model

SMT solver

> Quantifier-free solver enumerates models £'U Q
» FE is a conjunctive set of ground literals

» Q is a conjunctive set of quantified clauses

Congruence Closure with Free Variables (CCFV) 3/17

Problem statement

SMT formula

SMT solver

Quantifier-free SMT solver
Instantiation
Th
module r eory SAT solver

Boolean Model

(ModeQ'ACUNSAT (proof/core))

> Quantifier-free solver enumerates models £'U Q
» FE is a conjunctive set of ground literals

» Q is a conjunctive set of quantified clauses
D> Instantiation module generates instances from Q and adds them to F

Congruence Closure with Free Variables (CCFV) 3/17

Heuristic instantiation

Pattern-matching of terms from Q into terms of F

No consistency check of £ U Q
© Fast, but too many instances

Congruence Closure with Free Variables (CCFV) 4 /17

Heuristic instantiation

Pattern-matching of terms from Q into terms of F

No consistency check of £ U Q
© Fast, but too many instances

@ Instantiation module

Congruence Closure with Free Variables (CCFV) 4 /17

Heuristic instantiation

Pattern-matching of terms from Q into terms of F

No consistency check of £ U Q
© Fast, but too many instances

Instantiation module

Congruence Closure with Free Variables (CCFV) 4 /17

Heuristic instantiation

Pattern-matching of terms from Q into terms of F

No consistency check of £ U Q
© Fast, but too many instances

Instantiation module

Congruence Closure with Free Variables (CCFV) 4 /17

Heuristic instantiation

Pattern-matching of terms from Q into terms of F

No consistency check of £ U Q
© Fast, but too many instances

Instantiation module

Congruence Closure with Free Variables (CCFV) 4 /17

Heuristic instantiation

Pattern-matching of terms from Q into terms of F

No consistency check of £ U Q
© Fast, but too many instances

Instantiation module

Congruence Closure with Free Variables (CCFV) 4 /17

Heuristic instantiation

Pattern-matching of terms from Q into terms of F

No consistency check of £ U Q
© Fast, but too many instances

Easily gets out of hand! dule

Congruence Closure with Free Variables (CCFV) 4 /17

Goal-oriented instantiation

Check consistency of EU Q

@ Only instances refuting the current model are generated

Congruence Closure with Free Variables (CCFV) 5/17

Goal-oriented instantiation

Check consistency of EU Q

@ Only instances refuting the current model are generated

@ Goal-oriented instantiation module

Congruence Closure with Free Variables (CCFV) 5/17

Goal-oriented instantiation

Check consistency of EU Q

@ Only instances refuting the current model are generated

Goal-oriented instantiation module

Congruence Closure with Free Variables (CCFV) 5/17

Goal-oriented instantiation

Check consistency of EU Q

@ Only instances refuting the current model are generated

VZ.a) — o

Goal-oriented instantiation module

Congruence Closure with Free Variables (CCFV) 5/17

Goal-oriented instantiation

Check consistency of EU Q

@ Only instances refuting the current model are generated

VZ.a) — o

EANyo =L

’Goal—oriented instantiation module

Congruence Closure with Free Variables (CCFV) 5/17

Previous work

Conflict-based instantiation [RTM14]

> Given a model E'U Q, for some Vz. 1) € Q find o s.t. EAYo = L
> Add instance VZ. ¥ — 1o to quantifier-free solver

Finding conflicting instances requires deriving o s.t.

E E o

@ Goal-oriented

@ Efficient

© Ad-hoc

© Incomplete

Congruence Closure with Free Variables (CCFV) 6 /17

Let's look deeper into the problem

E = =)o, for some Vz. ¢ € Q

Congruence Closure with Free Variables (CCFV) 7/17

Let's look deeper into the problem

E = =)o, for some Vz. ¢ € Q

E={f(a) = f(b), g(b) # h(c)}, @ = {Vayz. f(x) = f(2) = h(y) = g(2)}

Congruence Closure with Free Variables (CCFV) 7/17

Let's look deeper into the problem

E = =)o, for some Vz. ¢ € Q

E={f(a) = f(b), g(b) # h(c)}, Q= {Vayz. f(z) = f(2) = h(y) =~ g(2)}
fla) = f(b) Ag(b) # h(c) = (f(x) = f(z) Nh(y) #9(2)) 0

Congruence Closure with Free Variables (CCFV) 7/17

Let's look deeper into the problem

E = =)o, for some Vz. ¢ € Q

E={f(a) = f(b), g(b) £ h(c)}, Q= {Vayz. f(x) = f(z) = h(y) = g(2)}
fla) = f(b) Ag(b) # h(c) = (f(x) = f(z) Nh(y) #9(2)) 0

> Each literal in the right hand side delimits possible o

Congruence Closure with Free Variables (CCFV) 7/17

Let's look deeper into the problem

E = =)o, for some Vz. ¢ € Q

E = {f(a) = [(b), g(b) # h(e)}, Q = {Vayz. f(a) = f(2) - h(y) = g(2))
fla) = f(b) A g(b) # he) E (fa) = f(z) Ah(y) # g(2)) o

> Each literal in the right hand side delimits possible o

> f(z)~ f(2): eitherz~zorx~aAz~borx~bAz~a

Congruence Closure with Free Variables (CCFV) 7/17

Let's look deeper into the problem

E = =)o, for some Vz. ¢ € Q

E = {f(a) = [(b), g(b) # h(e)}, Q = {Vayz. f(a) = f(2) - h(y) = g(2))
fla) = f(b) A g(b) # he) E (fa) = f(z) Ah(y) # g(2)) o

> Each literal in the right hand side delimits possible o

> f(z)~ f(2): eitherz~zorx~aAz~borx~bAz~a

h(y) #g(z): y~cAhz>~b

Congruence Closure with Free Variables (CCFV) 7/17

Let's look deeper into the problem

E = =)o, for some Vz. ¢ € Q

E = {f(a) = [(b), g(b) # h(e)}, Q = {Vayz. f(a) = f(2) - h(y) = g(2))
fla) = f(b) A g(b) # he) E (fa) = f(z) Ah(y) # g(2)) o

> Each literal in the right hand side delimits possible o

» f(x)~ f(2): eitherz~zorx~aAz~borz~bAz~a
h(y) # 9(z): y=ehz=b

o={x—=b y—c z— b}

Congruence Closure with Free Variables (CCFV) 7/17

Let's look deeper into the problem

E = =)o, for some Vz. ¢ € Q

E = {f(a) ~ f(b), g(b) # h()}, @ = {Fayz. f(z) ~ f(2) = h(y) ~ g(2)}
fla) = f(b) Ag(b) # h(c) = (f(z) = f(z) Nh(y) £ 9(2)) o
> Each literal in the right hand side delimits possible o
» f(x)~ f(z): eitherz~zorz~aAz~borz~bAz~a
h(y) #9(2): y~chz=~b
o={x—=b y—c z— b}

or
o={x—a,y—c z— b}

Congruence Closure with Free Variables (CCFV) 7/17

Let's look deeper into the problem

E = =)o, for some Vz. ¢ € Q

E = {f(a) ~ f(b), g(b) # h()}, @ = {Fayz. f(z) ~ f(2) = h(y) ~ g(2)}
fla) = f(b) Ag(b) # h(c) = (f(z) = f(z) Nh(y) £ 9(2)) o
> Each literal in the right hand side delimits possible o
» f(x)~ f(z): eitherz~zorx~aAz~borxz~bAz~a
h(y) #9(2): y~chz=~b
o={x—=b y—c z— b}

or
o={x—a,y—c z— b}

Congruence Closure with Free Variables (CCFV) 7/17

E-ground (dis)unification

Given conjunctive sets of equality literals £ and L, with E ground, finding
a substitution o s.t. E = Lo

Congruence Closure with Free Variables (CCFV) 8 /17

E-ground (dis)unification

Given conjunctive sets of equality literals £ and L, with E ground, finding
a substitution o s.t. E = Lo

> Variant of classic (non-simultaneous) rigid E-unification

Congruence Closure with Free Variables (CCFV) 8 /17

E-ground (dis)unification

Given conjunctive sets of equality literals £ and L, with E ground, finding
a substitution o s.t. E = Lo

> Variant of classic (non-simultaneous) rigid E-unification

> NP-complete

NP: Solutions can be restricted to ground terms in EU L
NP-hard: reduction of 3-SAT

Congruence Closure with Free Variables (CCFV) 8 /17

Congruence Closure with Free Variables (CCFV)

CCFV is a sound, complete and terminating calculus for solving E-ground
(dis)unification

Congruence Closure with Free Variables (CCFV) 9 /17

Congruence Closure with Free Variables (CCFV)

CCFV is a sound, complete and terminating calculus for solving E-ground
(dis)unification

@ Goal-oriented

@ (More) Efficient

Congruence Closure with Free Variables (CCFV) 9 /17

Congruence Closure with Free Variables (CCFV)

CCFV is a sound, complete and terminating calculus for solving E-ground
(dis)unification

@ Goal-oriented
@ (More) Efficient

© Ad-hoe Versatile framework, recasting many instantiation
techniques as a CCFV problem

© +reemplete Finds all conflicting instances of a quantified formula

Congruence Closure with Free Variables (CCFV) 9 /17

Existing techniques as special cases

> Conflict-based instantiation [RTM14]
@ CCFV provides formal guarantees and more clear extensions

> E-matching based heuristic instantiation [DNS05; MBO07]
@ CCFV allows to easily discard instances already entailed by F

> Model-based instantiation [GM09; RTG+13]

@ No need for a secondary ground SMT solver
@ No need to guess solutions

Congruence Closure with Free Variables (CCFV) 10 / 17

Towards a theory solver for instantiation

> Model generation

SMT formula

Quantifier-free SMT solver

Conflict clause

SAT solver

Boolean Model

> Conflict set generation SMT solver

Instantiation
module

> Propagation

> |ncrementa|ity CMDdeI)A(UNSAT (prooflcore))

Congruence Closure with Free Variables (CCFV) 11 /17

Finding solutions o for E = Lo

D> Search for solutions as a series of AND-OR constraints depending on
the entailment of conditions of literals in L

Congruence Closure with Free Variables (CCFV) 12 /17

Finding solutions o for E = Lo

D> Search for solutions as a series of AND-OR constraints depending on
the entailment of conditions of literals in L

> Congruence closure as a core element

» All terms inferred equal are kept in the same class
» Constraints to be entailed are normalized according to partial
solutions

Congruence Closure with Free Variables (CCFV) 12 /17

Finding solutions o for E = Lo

D> Search for solutions as a series of AND-OR constraints depending on
the entailment of conditions of literals in L

> Congruence closure as a core element

» All terms inferred equal are kept in the same class
» Constraints to be entailed are normalized according to partial
solutions

> Different possibilities for building solutions are handled with branching
and backtracking

Congruence Closure with Free Variables (CCFV) 12 /17

L
(f(z) = f(z) AND(y) £ 9(2)) 0

ence Closure with Free Variables (CCFV) 13 /17

ongruence

Closure with Free Variables (CCFV)

13 /17

ongruence

E E Lo
fla) = f) Ag(b) £ h(c) = (flz)=[f(z) Ab(y) #£9(2))0

flz) = f(2) Nh(y) £ 9(2)

y~cAz~bA f(z) ~ f(2)

Closure with Free Variables (CCFV)

13 /17

ongruence

E E Lo
fla) = f) Ag(b) £ h(c) = (flz)=[f(z) Ab(y) #£9(2))0

Jlw) = [(z) Ah(y) # 9(2)
y~cAz>=bA f(x)=~ f(z2)

y~c

zbA f(z) ~ f(2)

Closure with Free Variables (CCFV)

13 /17

ongruence

Closure

with Free Variables (CCFV)

13 /17

ongruence

Closure

with Free Variables (CCFV)

13 /17

f(@) = f(b)
r~a r~b
r~a,y~c 7~b‘ ‘x:byzcz:b
T T

Congruence Closure with Free Variables (CCFV) 13 / 17

Implementation

SMT solver

Quantifier-free SMT solver

Conflict clause

SAT solver

Boolean Model

Instance

Instantiation
module

> Model minimisation

Congruence Closure with Free Variables (CCFV)

14 /17

Implementation

SMT solver

Instantiation
module

> Top symbol indexing of E-graph from ground congruence closure

Quantifier-free SMT solver

Conflict clause

SAT solver

Boolean Model

> Model minimisation

E = f(z)o ~t only if [t] contains some f(t')

Congruence Closure with Free Variables (CCFV) 14 /17

Implementation

SMT solver

Instance

- e . . Instantiation
> Model minimisation

Quantifier-free SMT solver

Conflict clause

Th
SAT solver

Boolean Model

> Top symbol indexing of E-graph from ground congruence closure

E = f(z)o ~t only if [t] contains some f(t')

f([tl]a) [tn])

f—

Congruence Closure with Free Variables (CCFV)

CANNA)

14 /17

Implementation

SMT solver

Instance

- e . . Instantiation
> Model minimisation

Quantifier-free SMT solver

Conflict clause

Th
SAT solver

Boolean Model

> Top symbol indexing of E-graph from ground congruence closure

E = f(z)o ~t only if [t] contains some f(t')

f([tl]a) [tn])

f—

» Bitsets for fast checking if a symbol has
congruence class

Congruence Closure with Free Variables (CCFV)

CANNA)

applications in a

14 /17

Implementation

D> Selection strategies

EE f(z,y) ~h(z) Noe ~tNC

Congruence Closure with Free Variables (CCFV) 15 / 17

Implementation

D> Selection strategies

ElEfx,y) 2h(z) ANz =tnC

Congruence Closure with Free Variables (CCFV) 15 / 17

Implementation
D> Selection strategies

ElEfx,y) 2h(z) ANz =tnC

> Eagerly checking whether constraints can be discarded

» After assigning x to ¢, the remaining problem is normalized

EE f(t,y) ~h(z) ANC

Congruence Closure with Free Variables (CCFV) 15 / 17

Implementation

D> Selection strategies

ElEfx,y) 2h(z) ANz =tnC

> Eagerly checking whether constraints can be discarded

» After assigning x to ¢, the remaining problem is normalized

EE f(t,y) ~h(z) ANC

» E E f(t,y)o ~ h(z)o only if there is some f(t',t") s.t.

EEt~t

Congruence Closure with Free Variables (CCFV) 15 / 17

Efficiency scatter plot

s + + +H

verit_tc
cve_d

veriT: + 800 out of 1785 unsolved problems
CVC4:+ 200 out of 745 unsolved problems

* experiments in the “UF”, “UFLIA”, “UFLRA” and “UFIDL" categories of SMT-LIB, which have 10 495 benchmarks
annotated as unsatisfiable, with 30s timeout.

Congruence Closure with Free Variables (CCFV) 16 / 17

Conclusions and future work

> A unifying framework for quantified formulas with equality and
uninterpreted functions

> Lifting congruence closure to accommodate free variables

> Efficient implementations in the SMT solvers CVC4 and veriT

Congruence Closure with Free Variables (CCFV) 17 / 17

Conclusions and future work

> A unifying framework for quantified formulas with equality and
uninterpreted functions

> Lifting congruence closure to accommodate free variables
> Efficient implementations in the SMT solvers CVC4 and veriT

Extensions

> Finding conflicting instances across multiple quantified formulas

ElE—-YioV---V-po, VI.¢eQ

> Incrementality

> Learning-based search for solutions
> Beyond theory of equality

> Handle variables in E

Congruence Closure with Free Variables (CCFV) 17 / 17

Thank you

Congruence Closure with Free Variables (CCFV) 17 / 17

References

@ David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: A Theorem Prover for
Program Checking”. In: J. ACM 52.3 (2005), pp. 365-473.

@ Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified
Formulas in Satisfiabiliby Modulo Theories”. In:
Computer Aided Verification (CAV). Ed. by Ahmed Bouajjani and Oded Maler.
Vol. 5643. Lecture Notes in Computer Science. Springer, 2009, pp. 306—-320.

@ Leonardo de Moura and Nikolaj Bjgrner. “Efficient E-Matching for SMT Solvers”.
In: Proc. Conference on Automated Deduction (CADE). Ed. by Frank Pfenning.
Vol. 4603. Lecture Notes in Computer Science. Springer, 2007, pp. 183-198.

@ Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krsti, Morgan Deters, and
Clark Barrett. “Quantifier Instantiation Techniques for Finite Model Finding in
SMT". In: Proc. Conference on Automated Deduction (CADE). Ed. by
Maria Paola Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer,
2013, pp. 377-391.

@ Andrew Reynolds, Cesare Tinelli, and Leonardo Mendong¢a de Moura. “Finding
conflicting instances of quantified formulas in SMT". In:
Formal Methods In Computer-Aided Design (FMCAD). IEEE, 2014, pp. 195-202.

