
Revisiting Enumerative Instantiation

Andrew Reynolds1(B), Haniel Barbosa1,2(B), and Pascal Fontaine2(B)

1 University of Iowa, Iowa City, USA

andrew.j.reynolds@gmail.com
2 Université de Lorraine, CNRS, Inria, LORIA,

Nancy, France

{haniel.barbosa,pascal.fontaine}@inria.fr

Abstract. Formal methods applications often rely on SMT solvers to

automatically discharge proof obligations. SMT solvers handle quanti-

fied formulas using incomplete heuristic techniques like E-matching, and

often resort to model-based quantifier instantiation (MBQI) when these

techniques fail. This paper revisits enumerative instantiation, a tech-

nique that considers instantiations based on exhaustive enumeration of

ground terms. Although simple, we argue that enumerative instantiation

can supplement other instantiation techniques and be a viable alterna-

tive to MBQI for valid proof obligations. We first present a stronger

Herbrand Theorem, better suited as a basis for the instantiation loop

used in SMT solvers; it furthermore requires considering less instances

than classical Herbrand instantiation. Based on this result, we present

different strategies for combining enumerative instantiation with other

instantiation techniques in an effective way. The experimental evaluation

shows that the implementation of these new techniques in the SMT solver

CVC4 leads to significant improvements in several benchmark libraries,

including many stemming from verification efforts.

1 Introduction

In many formal methods applications, such as verification, it is common to rep-
resent proof obligations in terms of the Satisfiability Modulo Theories (SMT)
problem. SMT solvers have thus become popular backends for such applications.
They have been primarily designed to be decision procedures for quantifier-free
problems, on which they are highly efficient and capable of handling large for-
mulas over background theories. Quantified formulas are generally handled with
instantiation techniques that are often incomplete, even on decidable or semi-
decidable fragments. Heavily relying on incomplete heuristics however leads to
instability and unpredictability on the solver’s behavior, which is undesirable for
the tools relying on them. To address these issues some systems use model-based

c© The Author(s) 2018

D. Beyer and M. Huisman (Eds.): TACAS 2018, LNCS 10806, pp. 112–131, 2018.

https://doi.org/10.1007/978-3-319-89963-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89963-3_7&domain=pdf

Revisiting Enumerative Instantiation 113

instantiation (MBQI) [19], a complete technique for first-order logic with equal-
ity and for several restricted fragments containing theories, which can be used
as a fallback strategy to the incomplete techniques.

In this paper we introduce a novel enumerative instantiation technique which
can serve as a simpler alternative to model-based instantiation. Similar to MBQI,
our technique can be used as a secondary strategy when incomplete techniques
fail. Our experiments show that a careful implementation of this technique in
the state-of-the-art SMT solver CVC4 leads to noticeable gains in performance
on unsatisfiable problems.

Background. Some of the earliest tools for theorem proving in first-order logic
come from the work by Skolem and Herbrand. The Herbrand Theorem states
that if a closed formula in Skolem normal form, i.e. a prenex formula without
existential quantifiers, is unsatisfiable, then there is an unsatisfiable finite con-
junction of Herbrand instances of the formula, that is, instances on terms from
the Herbrand universe, i.e. the set of all possible well-sorted ground terms in the
formula’s signature. The first theorem provers for first-order logic to be imple-
mented based on Herbrand’s theorem employed a completely unguided search
on the Herbrand Universe (e.g. Gilmore [20] and Davis et al. [11] early efforts).
Such systems were only capable of dealing with very simple formulas and were
soon put aside. Techniques which would only generate Herbrand instances when
needed were first introduced by Prawitz [24] and later refined by Davis and
Putnam [12], culminating in the resolution calculus introduced by Robinson [30].
The most successful techniques for handling pure first-order logic have been
based on resolution and ordering criteria [3]. More recently, techniques based on
instantiation have shown promise for first-order logic as well [13,17,28]. Inspired
by early work on the subject, this paper revisits whether modern implementa-
tions of the latter class of techniques can benefit from enumerative instantiation.

Outline. We first give preliminaries in Sect. 2. Then, we introduce a stronger
Herbrand Theorem as the basis for making enumerative instantiation practical
so that it can be used in modern systems in Sect. 3. We formalize the differ-
ent instantiation strategies used by state-of-the-art SMT solvers, discuss their
strengths and weaknesses, and present a schematization of how to combine such
strategies in Sect. 4, with a focus on a new strategy for enumerative instan-
tiation. An extensive experimental evaluation of enumerative instantiation as
implemented in CVC4 is presented in Sect. 5.

114 A. Reynolds et al.

2 Preliminaries

We work in the context of many-sorted first-order logic with equality (see
e.g. [16]) and assume the reader is familiar with the notions of signature, term,
(quantified and ground) formula, atom, literal, free and bound variable, and
substitution.

We consider signatures Σ containing a Bool sort and constants �, ⊥ and a
family of predicate symbols (≈ : τ × τ → Bool) interpreted as equality for each
sort τ . Without loss of generality, we assume ≈ is the only predicate in Σ. We
use = for syntactic equality. The set of all terms occurring in a formula ϕ (resp.
term t) is denoted by T(ϕ) (resp. T(t)). We write t̄ for the sequence of terms
t1, . . . , tn for an unspecified n ∈ N

+ that is either irrelevant or deducible from
the context.

An interpretation is a triple M = (D , I , V) in which D is a collection of
non-empty domain sets for all sorts in Σ, I interprets symbols by mapping
them into functions over domain sets according to the symbol sort, and V maps
free variables to elements of their respective domain sets. A theory is a pair
T = (Σ, Ω) in which Σ is a signature and Ω is a class of interpretations
denoted the models of T . The empty theory is the theory for which the class
of interpretations Ω is unrestricted, which coincides with first-order logic with
equality. Throughout this paper we assume a fixed background theory T , which
unless otherwise stated is the empty theory. A formula ϕ is satisfiable (resp.
unsatisfiable) in T if it is satisfied by some (resp. no) interpretation M ∈ Ω,
written M |=T ϕ. A formula ϕ entails in T a formula ψ, written ϕ |=T ψ,
if every interpretations in Ω satisfying ϕ also satisfies ψ. For these notions of
model satisfaction and entailment in the empty theory, we omit the subscript.

A substitution σ maps variables to terms and its domain, dom(σ), is finite.
We write ran(σ) to denote its range. Throughout the paper, conjunctions may be
written as sets or tuples, and vice-versa, whenever convenient and unambiguous.
All definitions are assumed to be lifted in the expected way from formulas into
sets or tuples of formulas.

Fig. 1. The SMT instantiation loop for quantified formulas

Revisiting Enumerative Instantiation 115

Instantiation-Based SMT Solvers

Quantifiers in formulas are generally handled by SMT solvers through
instantiation-based techniques, which capitalize on their capability to handle
large ground formulas. In this approach, an input formula ψ is given to the
ground SMT solver, which will abstract all atoms and quantified formulas and
treat them as if they were propositional variables. The solver for ground formu-
las will provide an assignment E ∪ Q, where E is a set of ground literals and Q

is a set of quantified formulas appearing in ψ, such that E ∪ Q propositionally
entails ψ. We assume that all quantified formulas in ψ are of the form ∀x̄. ϕ

with ϕ quantifier-free. This can be achieved by prenex form transformation and
Skolemization. The instantiation module of the solver will then generate new
ground formulas of the form ∀x̄. ϕ ⇒ ϕσ where ∀x̄. ϕ is a quantified formula
in Q and σ is a substitution from the variables in ϕ to ground terms. These
instances will be added conjunctively to the input of the ground solver, hence
refining its knowledge of the quantified formulas. The ground solver may then
provide another assignment E′ ∪ Q′, where this is a set that entails both ϕ and
the newly added instances. This new assignment might either be the previous
one, augmented by new ground literals coming from the new instances, or if the
previous E has been refuted by the new instances, a completely different set. On
the other hand, the process may terminate if the newly added instances suffice
to prove the unsatisfiability of the original formula. We will refer to the game
between the ground solver that provides assignments for the abstraction of the
formula and the instantiation module that provides instances added conjunc-
tively to the formula, as the instantiation loop of the SMT solver (see Fig. 1).

3 Herbrand Theorem and Beyond

The Herbrand Theorem (see e.g. [16]) for pure first-order logic with equality1

provides a refutationally complete procedure to check the satisfiability of a for-
mula ψ, or more specifically of a set of literals and quantifiers E ∪ Q. Indeed,
E ∪ Q is satisfiable if and only if E ∪ Qg is satisfiable, where Qg is the set of all
(Herbrand) instances one can build from the quantifiers in Q by instantiation
with the Herbrand universe, i.e. all the possible well-sorted terms built on the
signature used in E ∪ Q. Based on this, an instantiation module has a simple
refutationally complete strategy for pure first-order logic with equality: it suf-
fices to enumerate Herbrand instances. The major drawback of this strategy is
that the Herbrand universe is large. For instance, as soon as there is a function
with the range sort also used as an argument, the Herbrand universe is infinite.
1 The Herbrand Theorem is generally presented in pure first-order logic without equal-

ity, but it also holds for equality: it suffices to consider the equality axioms conjunc-

tively with formulas.

116 A. Reynolds et al.

Fortunately, a stronger variant of the Herbrand Theorem holds. Using this
variant, the instantiation module does not need to consider all possible well-
sorted terms (i.e. the full Herbrand universe), but only the terms already avail-
able in E ∪ Q, and those subsequently generated.

Theorem 1. Consider the conjunctive sets E and Q of ground literals and uni-
versally quantified clauses respectively where T(E) contains at least one term of
each sort. The set E ∪ Q is unsatisfiable in pure first-order logic if and only if
there exists a series Qi of finite sets of instances of Q such that

– for some number n, the finite set of formulas E ∪ ⋃n
i=1 Qi is unsatisfiable;

– Qi+1 ⊆ {
ϕσ | ∀x̄. ϕ ∈ Q, ran(σ) ⊆ T(E ∪ ⋃i

j=1 Qj)
}
.

Proof. All proofs for this section are included in [26]. ��
The above theorem is stronger than the classical Herbrand theorem in the sense
that the set of instances considered above is smaller (or equal) than the set of
instances considered in the classical Herbrand theorem. As a trivial example,
if a function f appears only in E ∪ Q in ground terms, no new applications of
f are considered. The theorem does not consider all arbitrary terms from the
signature, but only those that are generated by the successive instantiations with
only already available ground terms. Note the theorem holds for pure first-order
logic with equality, and in any theory that preserves the compactness property. It
is also necessary however to consider the axioms of the theory for the generation
of new terms, that might lead to other instances.

In the Bernays-Schönfinkel-Ramsey fragment of first-order logic (also know
as the EPR class) formulas do not contain non constant function symbols, there-
fore the Herbrand universe of any formula is a finite set. Since the above sets
of terms are a subset of the Herbrand universe, the enumeration will always
terminate, even when the formula is satisfiable. Therefore, the resulting ground
problem is decidable, and the above method comprises a decision procedure for
this fragment, just like some variant of model-based quantifier instantiation.

Theorem 1 implies that an instantiation module only has to consider terms
occurring within assignments, and not all possible terms. To show refutational
completeness (termination on unsatisfiable input) and model soundness (termi-
nation without declaring unsatisfiability implies that the input is satisfiable), it
is however necessary to account for the successive assignments produced by the
ground SMT solver and the consecutive generation of instances. This is achieved
using the following lemma.

Lemma 1. Consider the conjunctive sets E and Q of ground literals and uni-
versally quantified clauses respectively where T(E) contains at least one term
of each sort. If there exists an infinite series of finite satisfiable sets of ground
literals Ei and of finite sets of ground instances Qi of Q such that

Revisiting Enumerative Instantiation 117

– Qi =
{
ϕσ | ∀x̄. ϕ ∈ Q, dom(σ) = {x̄} ∧ ran(σ) ⊆ T(Ei)

}
;

– E0 = E, Ei+1 |= Ei ∪ Qi;

then E ∪ Q is satisfiable in the empty theory with equality.

The above lemma has two direct consequences on the instantiation loop of
SMT solvers, where instances are generated from the set of available terms in
the ground assignment provided by the ground SMT solver. The following two
corollaries state the model soundness and the refutational completeness of the
instantiation loop respectively.

Corollary 1. Given a formula ψ, if there exists a satisfiable set of literals E and
a set of quantified clauses Q such that E ∪ Q |= ψ and the instantiation module
of the SMT solver cannot generate any new instance, i.e. E already entails all
instances of Q for substitutions built with terms T(E), then ψ is satisfiable.

Proof. A formal statement of the corollary and a proof is available in [26]. ��
Corollary 2. Given an unsatisfiable formula, if the generation of instances is
fair the instantiation loop of the SMT solver terminates.

Proof. A formal statement of the corollary and a proof is available in [26]. ��

Fig. 2. Quantifier Instantiation strategies: Conflict-based Instantiation (c), E-matching

instantiation (e), Model-based Instantiation (m) and Enumerative Instantiation (u).

4 Quantifier Instantiation in CDCL(T)

This section overviews recent techniques used by SMT solvers for quantifier
instantiation, and comments on their relative strengths and weaknesses. We will

118 A. Reynolds et al.

focus on enumerative quantifier instantiation, a technique which has received lit-
tle attention in recent work, but has several compelling advantages with respect
to current techniques.

Definition 1 (Instantiation Strategy). An instantiation strategy takes as
input:

1. A T -satisfiable set of ground literals E, and
2. A quantified formula ∀x̄. ϕ.

It outputs a set of substitutions {σ1, . . . , σn} where dom(σi) = x̄ for each i =
1, . . . , n.

Figure 2 gives four instantiation strategies used by modern SMT solvers, each
that have the interface given in Definition 1. The first three have been described
in detail in previous works (see [25] for a recent overview). We briefly review these
techniques in this section. The fourth, enumerative quantifier instantiation, is the
subject of this paper.

Conflict-based instantiation (c) was introduced in [28] as a technique for
improving the performance of SMT solvers for unsatisfiable problems. In this
strategy, we return a substitution σ such that ϕσ together with E is unsatisfiable,
We refer to ϕσ as a conflicting instance (for E). Typical implementations of this
strategy do not insist that a conflicting instance be returned if one exists, and
hence the strategy may choose to return the empty set of substitutions. Recent
work [4,5] gives a strategy for conflict-based instantiation that has refutational
completeness guarantees for the empty theory with equality, that is, when a
conflict instance exists for a quantified formula in this theory, the strategy is
guaranteed to return it.

E-matching instantiation (e) is the most commonly used strategy for quan-
tifier instantiation in modern SMT solvers [13,15,18]. In this strategy, we first
heuristically choose a set of triggers for a quantified formula ∀x̄. ϕ, where a trig-
ger is a tuple of terms whose free variables are x̄. In practice, triggers can be
selected using user-provided annotations, or selected automatically by the SMT
solver. For each trigger t̄i, we select a set of substitutions Si such that for each σ

in this set, E entails that t̄iσ is equal to a tuple of ground terms gi in E. We return
the union of these sets Si for each selected trigger. E-matching instantiation is
generally incomplete, but works well in practice for unsatisfiable problems, and
hence is a key component of most SMT solvers that support quantified formulas.

Model-based quantifier instantiation (m) was introduced in [19], and has
also been used for improving the performance of finite model finding [29]. In this
strategy, we first construct a model M for the quantifier-free portion of our input
E, where typically the interpretations of functions for values not constrained by E

are chosen heuristically. Notice that M does not necessarily satisfy the quantified

Revisiting Enumerative Instantiation 119

formula ∀x̄.ϕ. If it does not, we return a single substitution σ for which M does
not satisfy ϕσ, where typically σ maps variables from x̄ to terms that occur in
T(E). With respect to conflict-based and E-matching instantiation, model-based
quantifier instantiation has the advantage that it is model sound: when it returns
∅, then E ∪ {∀x̄. ϕ} is satisfiable.

This paper revisits enumerative quantifier instantiation (u) as a viable alter-
native to model-based quantifier instantiation. In this strategy, we assume an
ordering � on quantifier-free terms. This ordering is not related to the usual
term ordering one generally uses for saturation theorem proving, but rather
determines which instance will be generated first. The strategy returns the sub-
stitution {x̄ �→ t̄}, where t̄ is the minimal tuple of terms with respect to �
from T(E) such that ϕ{x̄ �→ t̄} is not entailed by E. We refer to this strategy
as enumerative instantiation since in the worst case it generates instantiations
by enumerating tuples of all terms of the proper sort from E, according to the
ordering �. In practice, the number of instantiations produced by this strategy
is kept small by interleaving it with other strategies like c or e, or due to the fact
that a small number of instances may already allow the SMT solver to conclude
the input is unsatisfiable. Moreover, thanks to the results in Sect. 3, this strategy
is refutationally complete and model sound for quantified formulas in the empty
theory with equality.

Example 1. Consider the set of ground literals E = {¬P (a),¬P (b), P (c),¬R(b)}.
For the input (E,∀x. P (x) ∨ R(x)), the strategies in this section will do the
following.

1. Conflict based: Since E, P (b)∨R(b) |= ⊥, this strategy will return {{x �→ b}}.
2. E-matching: This strategy may choose the singleton set of triggers {(P (x))}.

Based on this trigger, since E |= P (x){x �→ t} ≈ P (t) where P (t) ∈ T(E) for
t = a, b, c, this strategy may return {{x �→ a}, {x �→ b}, {x �→ c}}.

3. Model-based: This strategy will construct a model M for E, where assume
that PM = λx. ite(x ≈ c, �, ⊥) and RM = λx. ⊥. Since M does not satisfy
P (a) ∨ R(a), this strategy may return {{x �→ a}}.

4. Enumerative instantiation: This strategy chooses an ordering on tuples of
terms, say the lexicographic extension of � where a ≺ b ≺ c. Since E does
not entail P (a) ∨ R(a), this strategy returns {{x �→ a}}. ��
In the previous example, clearly {x �→ b} is the most useful substitution, since

it leads to an instance P (b) ∨ R(b) which together with E is unsatisfiable. The
substitution {x �→ c} is definitely not a useful substitution, since it is already
entailed by P (c) ∈ E. The substitution {x �→ a} is potentially useful since it
forces the solver to satisfy P (a) ∨ R(a). Here, we point out that the effect of
enumerative instantiation and model-based instantiation is essentially the same,
as both return an instance that is not entailed by E. However, the substitutions

120 A. Reynolds et al.

produced by enumerative instantiation often have advantages with respect to
model-based instantiation on unsatisfiable problems.

Example 2. Consider the set of ground literals E = {¬P (a), R(b), S(c)} and the
quantified clauses Q = {∀x. R(x) ∨ S(x), ∀x. ¬R(x) ∨ P (x), ∀x. ¬S(x) ∨ P (x)}
in a mono-sorted signature. Notice that E ∪ Q is unsatisfiable: it suffices to
consider the instances of the three quantified formulas in Q with x �→ a. On such
an input, model-based instantiation will first construct a model for E. Assume
this model M is such that PM = λx. ⊥, RM = λx. ite(x ≈ b, �, ⊥), and
SM = λx. ite(x ≈ c, �, ⊥). Assuming enumerative instantiation chooses the
lexicographic extension of a term ordering � where a ≺ b ≺ c. The following
table summarizes the result of running the two strategies.

ϕ x s.t. M �|= ϕ x s.t. E �|= ϕ m(E,∀x. ϕ) u(E,∀x. ϕ)
R(x) ∨ S(x) a a {{x �→ a}} {{x �→ a}}

¬R(x) ∨ P (x) b a, b, c {{x �→ b}} {{x �→ a}}
¬S(x) ∨ P (x) c a, b, c {{x �→ c}} {{x �→ a}}

The second and third columns show the sets of possible values of x that are
considered with model-based and enumerative instantiation respectively, and the
third and fourth columns show one possible selection. The instances correspond-
ing to the three substitutions returned by enumerative instantiation R(a)∨S(a),
¬R(a)∨P (a) and ¬S(a)∨P (a) when conjoined with ¬P (a) from E are unsatisfi-
able, whereas the instances produced by model-based instantiation do not suffice
to show that E is unsatisfiable. Hence, the latter will consider an extension of
E that satisfies the instances R(a) ∨ S(a), ¬R(b) ∨ P (b) and ¬S(c) ∨ P (c) and
guess another model for this extension. ��

A key observation is that useful instantiations can be obscured by guesses
made when constructing models M . Here, since we decided R(a)M = ⊥, the
substitution {x �→ a} was not considered when applying model-based instanti-
ation to the second quantified formula, and since S(a)M = ⊥, the substitution
{x �→ a} was not considered when applying it to the third. In implementations
of model-based instantiation, certain values in models are chosen heuristically,
leading to this behavior. This is done out of necessity, since determining whether
there exists a model that satisfies quantified formulas, even for a fixed context,
is a challenging problem.

On the other hand, the range of substitutions considered by enumerative
instantiation in the previous example include all terms that correspond to
instances that are not entailed by E. The substitutions it considers are “mini-
mally diverse”, that is, in the previous example they introduce new predicates
on term a only, whereas model-based instantiation introduces new predicates
on a, b and c. Reducing the number of new terms introduced by instantiations

Revisiting Enumerative Instantiation 121

can have a significant positive impact on performance in practice. Furthermore,
enumerative instantiation has the advantage that a term ordering allows fine-
grained heuristics better suited for unsatisfiable problems, which we comment
on in Sect. 4.1.

Example 3. Consider the sets E = {a �≈ b, b �≈ c, a �≈ c} and Q = {∀x.P (x)}. For
the input (E, ∀x.P (x)), model-based quantifier instantiation will first construct a
model M for E, where assume that PM = λx.�. It is easy to see M |= ϕ{x �→ t}
for a, b, c ∈ T(E), and hence it returns the empty set of substitutions, indicating
that E ∪ Q is satisfiable. On the other hand, assume enumerative instantiation
chooses the lexicographic extension of a term ordering � where a ≺ b ≺ c. Since
E �|= P (a) and a is smaller than b and c according to �, u(E, P (x)) returns
the set containing {x �→ a}. Subsequently and for similar reasons, two more
iterations of this strategy will be invoked, resulting in the instances P (b) and
P (c) before it terminates with the empty set. ��

In this example, model-based instantiation was able to terminate on the first
iteration, since it guessed the correct interpretation for P , whereas enumerative
instantiation considered substitutions mapping x to each ground term a, b, c

from E. For this reason, model-based instantiation is typically better suited for
satisfiable problems.

4.1 Implementing Enumerative Instantiation

We comment on several important details concerning the implementation of
enumerative quantifier instantiation in the SMT solver CVC4.

Term Ordering. Given a term ordering �, CVC4 considers the extension to
tuples of terms such that:

(t1, . . . , tn) ≺ (s1, . . . , sn) if

{
maxn

i=1ti ≺ maxn
i=1si, or

maxn
i=1ti = maxn

i=1si and (t1, . . . , tn) ≺lex (s1, . . . , sn)

where ≺lex is the lexicographic extension of ≺. For example, if a ≺ b ≺ c, then
we have that (a, a) ≺ (a, b) ≺ (b, a) ≺ (b, b) ≺ (a, c) ≺ (c, b) ≺ (c, c). By this
ordering, we consider substitutions involving c only after all combinations of
substitutions involving a and b are considered. This choice is important since it
leads to instantiations that introduce fewer terms, and are thus more likely to
lead to conflicts at the ground level.

The underlying term ordering is determined dynamically based on the current
set of assertions E. At all times, we maintain a finite list of quantifier-free terms
such that we have fixed the ordering t1 ≺ . . . ≺ tn. Then, if all combinations
of instantiations for t1, . . . , tn are currently entailed by E, we choose a term

122 A. Reynolds et al.

t ∈ T(E) that is such that E �|= t ≈ ti for i = 1, . . . , n if one exists, and append it
to our ordering so that tn ≺ t. The particular choice of t beyond this criteria is
arbitrary. An experimental evaluation of more sophisticated term orderings, such
as those inspired by first-order automated theorem proving [2] is the subject of
future work.

Entailment Checks. For a set of ground equalities and disequalities E, quantified
formula ∀x̄.ϕ and substitution {x̄ �→ t̄}, CVC4 implements a two-layered method
for checking whether the entailment E |= ϕ{x̄ �→ t̄} holds. First, we maintain a
cache of instantiations that have already been returned on previous iterations.
Hence if E satisfies a set of formulas containing ϕ{x̄ �→ s̄}, where E |= t̄ ≈ s̄,
then the entailment clearly holds.

Second, we use an incomplete and fast method for inferring when an entail-
ment holds. We first compute from E congruence classes over T(E). For each
t ∈ T(E), let [t] be the representative of term t in this equivalence relation. For
each function f , we use a term index data structure If that stores an entry of
the form ([t1], . . . , [tn]) → [f(t1, . . . , tn)] ∈ If for each uninterpreted function
application f(t1, . . . , tn) ∈ T(E). To check the entailment of E |= 	 where 	 is a
literal, we update 	 based on the iterative process until a fixed point is reached:

1. Replace each constant t in 	 with [t].
2. Replace each function term f(t1, . . . , tn) in 	 with s if (t1, . . . , tn) → s ∈ If .
3. If 	 is t ≈ t, replace it by �.
4. If 	 is t �≈ s and t′ �≈ s′ ∈ E where [t′] = t and [s′] = s, replace it by �.

Then, if the resultant ψ is �, then the entailment holds. Although not shown
here, the above process is extended in a straightforward way to handle Boolean
structure, and also can be extended in the presence of other background theories
in a straightforward way by incorporating theory-specific rewriting steps.

Restricting Enumeration Space. Enumerative instantiation can be refined further
by noticing that only a subset of the set of terms T(E) will ever be relevant for
showing unsatisfiability of a quantified formula. An approach in this spirit was
used by Ge and de Moura [19], where decidable fragments were identified by
noticing that the relevant domains of quantified formulas in these fragments are
guaranteed to be finite. In that work, the relevant domain of a quantified formula
∀x̄. ψ is computed based on the terms in E and the structure of its body ψ. For
example, t is in the relevant domain of function f for all ground terms f(t),
the relevant domain of x for a quantified formula containing the term f(x) is
equal to the relevant domain of f , and so on. A related approach is to use sort
inference [8,9,22], to compute more precise sort information and thus decrease
the number of possible instantiations.

Revisiting Enumerative Instantiation 123

Example 4. Say E∪Q = {a �≈ b, f(a) ≈ c}∪{∀x.P (f(x))}, where a, b, c, x are of
sort τ , f is a unary function τ → τ , and P is a predicate on τ . It can be shown
that E ∪ Q is equivalent to Es ∪ Qs = {a1 �≈ b1, f12(a1) ≈ c2} ∪ {P2(f12(x1))},
where a1, b1, x1 are of sort τ1, c2 is of sort τ2, f12 is of sort τ1 → τ2, and P2 is a
predicate on τ2. ��

Sorts can be inferred in this manner using a linear traversal on the input formula
(for details, see for instance Sect. 4 of [22]). This technique narrows the set of
terms considered by enumerative instantiation. In the above example, whereas
enumerative instantiation for E∪Q might consider the substitutions {x �→ c} or
{x �→ f(c)}, for Es ∪ Qs it would not consider {x1 �→ c2} since their sorts are
different, nor would it consider {x1 �→ f12(c2)} since f12(c2) is not a well-sorted
term. Moreover, the Herbrand universe of an inferred subsort may be finite when
the universe of its parent sort is infinite. In the above example, the Herbrand
universe of τ1 is {a1, b1} and τ2 is {f12(a1), f12(b1), c2}, whereas the Herbrand
universe of τ is infinite.

Compound Strategies. Since the instantiation strategies from this section have
their respective strengths and weaknesses, it is valuable to combine them. We
consider two ways of combining strategies which we refer as priority instantiation
and interleaved instantiation. For base strategies s1 and s2, priority instantiation
(s1; s2) first invokes s1. If this strategy returns a non-empty set of substitutions,
it returns that set, otherwise it returns the instances returned by s2. On the other
hand, interleaved instantiation (s1+s2) returns the union of the substitutions
returned by the two strategies.

Enumerative instantiation is the most effective when used as a complement
to heuristic strategies. In particular, we will see in the next section that the
strategies c;e;u and c;e+u are the most effective strategies for unsatisfiable
problems in CVC4.

5 Experiments

This section reports on our experimental evaluation of different strategies based
on enumerative instantiation as implemented in the SMT solver CVC4.2 We
present an extensive analysis of enumerative instantiation and compare it with
implementations of model-based instantiation on both unsatisfiable and satis-
fiable benchmarks. Experiments were performed on untyped first-order bench-
marks from the TPTP library [33]3, version 6.4.0, and from SMT-LIB [7], as of
October 2017, on logics having quantifiers and either uninterpreted functions or
arrays. For the latter, we considered also logics containing other theories such as

2 For details, see http://matryoshka.gforge.inria.fr/pubs/fol enumerative inst/.
3 In SMT parlance, the logic of these benchmarks is quantified EUF.

http://matryoshka.gforge.inria.fr/pubs/fol_enumerative_inst/

124 A. Reynolds et al.

6000 8000 10000 12000 14000 16000 18000 20000
10−1

100

101

102

C
PU

tim
e
(s
)

Library # u e;u e+u e m e;m e+m uport mport port

TPTP 14731 4426 6125 6273 5396 4369 6066 6151 6674 6566 6859

UF 7293 2607 2906 2961 2862 2418 2898 2972 3119 3045 3159
UFDT 4384 1783 1977 1998 1958 1642 1954 1993 2091 2070 2113
UFLIA 7745 3622 5022 5037 4867 2638 4966 4989 5253 5132 5279
UFNIA 3213 1788 1947 1978 1937 1169 1860 1865 2107 2064 2138
Others 4699 2019 2348 2288 2320 966 2338 2312 2400 2363 2404

Total 42065 16245 20325 20535 19340 13202 20082 20282 21644 21240 21952

e+u
e;u
e+m
e;m
e
u
m

Fig. 3. CVC4 configurations on unsatisfiable benchmarks with a 300 s timeout.

arithmetic and datatypes. Some benchmarks are solved by all considered config-
urations of solvers in less than 0.1 s. We discarded those 25 580 benchmarks. In
total, 42 065 problems were selected, 14 731 from TPTP and 27 334 from SMT-
LIB. All results were produced on StarExec [32], a public execution service for
running comparative evaluations of solvers, with a timeout of 300 s.

We follow the convention in Sect. 4 for identifying configurations based on
their instantiation strategy. All configurations of CVC4 use conflict-based instan-
tiation [5,28] with highest priority, so we omit the prefix “c;” from the names of
CVC4 configurations e.g. e+u in fact means c;e+u. Sort inference, as discussed
in Sect. 4.1, is also used by all configurations of CVC4.

5.1 Impact of Enumerative Instantiation in CVC4

In this section, we highlight the impact of enumerative instantiation in CVC4
for unsatisfiable benchmarks. Where applicable, we contrast the difference in
the impact of enumerative instantiation and model-based instantiation on the
performance of CVC4 on unsatisfiable benchmarks.4

4 There are technical details that influence the comparison of these techniques

(see [26]).

Revisiting Enumerative Instantiation 125

The comparison of various instantiation strategies supported by CVC4 is
summarized in Fig. 3. In the table, each row is dedicated to a library and logic.
SMT-LIB is shown in more granularity than TPTP to highlight comparisons
of individual strategies. The first column identifies the subset and the second
shows its total number of benchmarks. The next seven columns show the number
of benchmarks found to be unsatisfiable by each configuration. The last three
columns show the results of virtual portfolio solvers, with uport combining e, u,
e;u, and e+u; and mport combining e, m, e;m, and e+m; while port combines
all seven configurations.

First, we can see that u outperforms m, as it solves 3 043 more benchmarks
overall. While this is not close to the performance of E-matching (e), it should be
noted that u is highly orthogonal to e, solving 1 737 benchmarks that could not
be solved by e5. Combining e with either u or m, using either priority or inter-
leaving instantiation, leads to significant gains in performance. Overall the best
configuration is e+u, that is, the interleaving of enumerative instantiation and
E-matching, which solves 20 535 benchmarks, that is, 253 more than its coun-
terpart e+m interleaving model-based instantiation and E-matching, and 1 295
more than E-matching alone. In the UFLIA logic, the enumerative techniques are
specially effective in comparison with the model-based ones. In particular, they
enable CVC4 to solve previously intractable problems, e.g. the family “sexpr”
with 32 problems. These are notoriously hard problems involving the verification
of C# programs using Spec# [6]. Z3 can solve 31 of them thanks to its advanced
optimizations of E-matching [13]. CVC4 previously could solve at most 16 using
techniques combining e and m, but u alone could solve 27, and all of 32 are
solved by e+u. Another example is the family “vcc-havoc” in UFNIA, stem-
ming from the verification of concurrent C with VCC [10]. The strategy e+u
solves 940 out of 984 problems, outperforming e and its combinations with m,
which solve at most 860 problems6.

The portfolio columns of the table in Fig. 3 highlight the improvement due
to enumerative instantiation for CVC4 on the number of solved problems: there
are 712 more problems overall solved when adding enumerative instantiation in
the strategies (see columns mport and port). The cactus plot of Fig. 3 shows
that while the priority strategies are initially quicker, the interleaving ones scale
better, solving more hard problems than their priority counterparts. Overall, we
conclude that in addition to being much simpler to implement7 instantiation
strategies that combine E-matching with enumerative instantiation in CVC4
have a noticeable advantage over those that combine E-matching with model-
based instantiation on unsatisfiable problems.

5 Number of uniquely solved benchmarks between configurations are available in [26].
6 A detailed comparison by families can be seen in [26].
7 As a rough estimate, the implementation of enumerative instantiation in CVC4 is

around 500 lines of code, whereas model-based instantiation is around 4500 lines of

code.

126 A. Reynolds et al.

5.2 Comparison Against Other SMT Solvers

In this section, we compare our implementation of enumerative instantiation
in CVC4 against another state-of-the-art SMT solver: Z3 [14] (version 4.5.1)
which, like CVC4, also relies on E-matching instantiation for handling unsat-
isfiable problems. Before making the comparison, we first summarize the main
differences between Z3 and CVC4 here. Z3 uses several optimizations for E-
matching that are not implemented in CVC4, including the use of code trees
and techniques for applying instantiation incrementally during the CDCL(T)
search (see Sect. 5 of [13]). It also implements techniques for removing previously
considered instantiations from its set of known clauses (see Sect. 7 of [13]). The
main advantage of CVC4 with respect to Z3 is its use of conflict-based instanti-
ation c [28], which is enabled by default in all strategies we considered. It also
supports interleaved instantiation strategies as described in Sect. 4.1, whereas Z3
does not. In addition to these differences, Z3 implements model-based instanti-
ation m as described in [19], whereas CVC4 implements model-based instanti-
ation as described in [29]. Finally, CVC4 implements enumerative instantiation
as described in this paper, which we compare as an alternative to these imple-
mentations.

6000 8000 10000 12000 14000 16000 18000 20000 22000
10−1

100

101

102

C
PU

tim
e
(s
)

uport-i
mport-i
z3 mport-i
e
z3 e

Library # z3 m z3 e z3 e;m z3 mport-i e uport-i mport-i

TPTP 14731 2382 4098 5288 5519 5396 6519 6396

UF 7293 1192 2428 2516 2600 2862 3076 2982
UFDT 4384 838 1702 1721 1781 1958 2062 2036
UFLIA 7745 2460 4751 4841 4923 4867 5164 5049
UFNIA 3213 1089 2074 2112 2238 1937 2091 2015
Others 4699 990 2226 2332 2346 2320 2393 2357

Total 42065 8951 17279 18810 19407 19340 21305 20835

Fig. 4. Z3 and CVC4 on unsatisfiable benchmarks with a 300 s timeout.

Revisiting Enumerative Instantiation 127

Figure 4 summarizes the performance of Z3 on our benchmark set. First,
like CVC4, using model-based instantiation to complement E-matching leads to
significant gains in Z3, as z3 e;m solves a total of 1731 more benchmarks than
solved by E-matching alone z3 e. In comparison with CVC4, the configuration z3
e outperforms e in the logics with non-linear arithmetic and other theories, while
e is better in the others. Finally, Z3’s implementation of model-based quantifier
instantiation by itself z3 m is not effective for unsatisfiable benchmarks, solving
only 8951 overall.

To further compare Z3 and CVC4, the third column from the left is the
number of benchmarks solved by CVC4’s E-matching strategy (e), which we gave
in Fig. 3. The second to last column uport-i gives the number of benchmarks
solved by at least one of u, e, or e;u in CVC4, where we intentionally omit
the interleaved strategy e+u, since Z3 does not support a similar strategy. The
column mport-i is computed similarly. We compare these with the fifth column,
z3 mport-i, i.e. the number of benchmarks solved by either z3 m, z3 e or
z3 e;m. A comparison of these is given in the cactus plot of Fig. 4. We can
see that due to Z3’s highly optimized implementations, z3 mport-i solves the
highest number of problems in less than one second (around 13000), whereas the
portfolio strategies of CVC4 solve more for larger timeouts. Overall, the best
portfolio strategy is enumerative instantiation in CVC4, which solves a total of
21305 unsatisfiable benchmarks overall, which is 1965 more benchmarks than
z3 mport-i, and 470 more benchmarks than mport-i. We thus conclude that
the use of enumerative instantiation when paired with E-matching and conflict-
based instantiation in CVC4 improves the state-of-the-art of instantiation-based
SMT solvers for unsatisfiable benchmarks.

Comparison with Automated Theorem Provers. Automated theorem provers like
Vampire [23] and E [31] use substantially different techniques based on super-
position, hence we do not provide an extensive comparison here. However, we
do remark that the gains provided by enumerative instantiation were one of
the main reasons for CVC4 being more competitive in the 2017 CASC com-
petition of automatic theorem provers [34]. CVC4 placed third in the category
with unsatisfiable problems on the empty theory, as in previous years, behind
superposition-based theorem provers Vampire and E, which implement complete
strategies. There was, however, a 23% reduction in the number of problems that
E solves and CVC4 does not, w.r.t. the previous competition, reducing the gap
between the two systems.

Satisfiable Benchmarks. For satisfiable benchmarks8, m solves 1350 benchmarks
across all theories. As expected, this is much higher than the number solved by

8 For further details, see [26].

128 A. Reynolds et al.

u, which solves 510 benchmarks, all from the empty theory. Nevertheless, there
are 13 satisfiable problems solved by u and not by m, which shows that enu-
merative instantiation has some orthogonality on satisfiable benchmarks as well.
We conclude that enumeration not only has superior performance to MBQI on
unsatisfiable benchmarks, but also can be an alternative for satisfiable bench-
marks in the empty theory.

5.3 Artifact

We have produced an artifact [27] to reproduce the experimental results pre-
sented in this paper. The artifact contains the binaries of the SMT solvers CVC4
and Z3, the benchmarks on which they were evaluated, and the running scripts
for each configuration evaluated. Detailed instructions are given to perform tests
on the various benchmark families with all configurations within the time limits,
as well as for retrieving the respective results in CSV format. The artifact has
been tested in the virtual machine available at [21].

6 Conclusion

We have presented a strengthening of the Herbrand Theorem, and used it to
devise an efficient technique for enumerative instantiation. The implementation
of this technique in the state-of-the-art SMT solver CVC4 increases its suc-
cess rate and outperforms existing implementations of MBQI on unsatisfiable
problems with quantified formulas. Given its relatively simple implementation,
this technique is well poised as an alternative to MBQI for being integrated in
an instantiation based SMT solver to achieve completeness in first-order logic
with the empty theory and equality, as well as perform improvements also when
theories are considered.

Future work includes further restricting the enumeration space, for instance
with ordering criteria in the spirit of resolution-based theorem proving [3].
Another direction is lifting the techniques seen here to reasoning in higher-order
logic. To handle quantification over functions it is often necessary to enumerate
expressions, and so performing such an enumeration in a principled manner is
paramount for this domain. Techniques from syntax-guided function synthesis [1]
could be combined with enumerative instantiation to pursue this goal.

Data Availability Statement and Acknowledgments. The datasets generated

and analyzed during the current study are available in the figshare repository: https://

doi.org/10.6084/m9.figshare.5917384.v1.

This work was partially funded by the National Science Foundation under Award

1656926, by the H2020-FETOPEN-2016-2017-CSA project SC2 (712689), and by the

European Research Council (ERC) starting grant Matryoshka (713999). We would

https://doi.org/10.6084/m9.figshare.5917384.v1
https://doi.org/10.6084/m9.figshare.5917384.v1

Revisiting Enumerative Instantiation 129

like to thank the anonymous reviewers for their comments. We are grateful to Jasmin

C. Blanchette for discussions, encouragements and financial support through his ERC

grant.

References

1. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,

Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:

Formal Methods in Computer-Aided Design (FMCAD), pp. 1–8. IEEE (2013)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,

New York (1998)

3. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A.,

Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 19–99 (2001)

4. Barbosa, H.: New techniques for instantiation and proof production in SMT solv-

ing. Ph.D. thesis, Université de Lorraine, Universidade Federal do Rio Grande do

Norte (2017)

5. Barbosa, H., Fontaine, P., Reynolds, A.: Congruence closure with free variables.

In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 214–230.

Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5 13

6. Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M., Schulte, W.,

Venter, H.: The Spec# programming system: challenges and directions. In: Meyer,

B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152. Springer,

Heidelberg (2008). https://doi.org/10.1007/978-3-540-69149-5 16

7. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5. Techni-

cal report, Department of Computer Science, The University of Iowa (2015). www.

SMT-LIB.org

8. Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity. In:

Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol.

6803, pp. 207–221. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-

642-22438-6 17

9. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model

finding. In: Proceedings of the CADE-19 Workshop: Model Computation - Princi-

ples, Algorithms, Applications (2003)

10. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,

Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:

Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,

vol. 5674, pp. 23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-

642-03359-9 2

11. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.

Commun. ACM 5(7), 394–397 (1962)

12. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM

7(3), 201–215 (1960)

13. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning,

F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg

(2007). https://doi.org/10.1007/978-3-540-73595-3 13

https://doi.org/10.1007/978-3-662-54580-5_13
https://doi.org/10.1007/978-3-540-69149-5_16
www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-22438-6_17
https://doi.org/10.1007/978-3-642-22438-6_17
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-540-73595-3_13

130 A. Reynolds et al.

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg

(2008). https://doi.org/10.1007/978-3-540-78800-3 24

15. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-

ing. J. ACM 52(3), 365–473 (2005)

16. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press,

Burlington (2001)

17. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving.

In: Symposium on Logic in Computer Science, p. 55 (2003)

18. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using

satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),

vol. 4603, pp. 167–182. Springer, Heidelberg (2007). https://doi.org/10.1007/978-

3-540-73595-3 12

19. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-

abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,

vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-

3-642-02658-4 25

20. Gilmore, P.C.: A proof method for quantification theory: its justification and real-

ization. IBM J. Res. Dev. 4(1), 28–35 (1960)

21. Hartmanns, A., Wendler, P.: figshare (2018). https://doi.org/10.6084/m9.figshare.

5896615

22. Korovin, K.: Non-cyclic sorts for first-order satisfiability. In: Fontaine, P.,

Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp.

214–228. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-

4 15

23. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In:

Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer,

Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

24. Prawitz, D.: An improved proof procedure1. Theoria 26(2), 102–139 (1960)

25. Reynolds, A.: Conflicts, models and heuristics for quantifier instantiation in SMT.

In: Kovács, L., Voronkov, A. (eds.) Vampire Workshop, EPiC Series in Computing,

pp. 1–15. EasyChair (2016)

26. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantia-

tion. Technical report, University of Iowa, Inria (2018). https://hal.inria.fr/hal-

01744956

27. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation -

Artifact (2018). figshare https://doi.org/10.6084/m9.figshare.5917384.v1

28. Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of quanti-

fied formulas in SMT. In: Formal Methods In Computer-Aided Design (FMCAD),

pp. 195–202. IEEE (2014)

29. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier

instantiation techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.)

CADE 2013. LNCS (LNAI), vol. 7898, pp. 377–391. Springer, Heidelberg (2013).

https://doi.org/10.1007/978-3-642-38574-2 26

30. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM

12(1), 23–41 (1965)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-73595-3_12
https://doi.org/10.1007/978-3-540-73595-3_12
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.6084/m9.figshare.5896615
https://doi.org/10.6084/m9.figshare.5896615
https://doi.org/10.1007/978-3-642-40885-4_15
https://doi.org/10.1007/978-3-642-40885-4_15
https://doi.org/10.1007/978-3-642-39799-8_1
https://hal.inria.fr/hal-01744956
https://hal.inria.fr/hal-01744956
https://doi.org/10.6084/m9.figshare.5917384.v1
https://doi.org/10.1007/978-3-642-38574-2_26

Revisiting Enumerative Instantiation 131

31. Schulz, S.: E - A brainiac theorem prover. AI Commun. 15(2,3), 111–126 (2002)

32. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure

for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.

LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.

1007/978-3-319-08587-6 28

33. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.

Reasoning 43(4), 337–362 (2009)

34. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101

(2016)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will

need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
http://creativecommons.org/licenses/by/4.0/

	Revisiting Enumerative Instantiation
	1 Introduction
	2 Preliminaries
	3 Herbrand Theorem and Beyond
	4 Quantifier Instantiation in CDCL(T)
	4.1 Implementing Enumerative Instantiation

	5 Experiments
	5.1 Impact of Enumerative Instantiation in CVC4
	5.2 Comparison Against Other SMT Solvers
	5.3 Artifact

	6 Conclusion
	References

