
SMTpp: preprocessors and analyzers for SMT-LIB
Richard Bonichon1, David Déharbe1, Pablo Dobal2, and Cláudia Tavares1 ∗

1 DIMAp, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
richard@dimap.ufrn.br, david@dimap.ufrn.br, claudia@ppgsc.ufrn.br

2 INRIA, Universite de Lorraine & LORIA, Nancy, France
pablo.dobal@inria.fr

Abstract
We present SMTpp, a tool that operates both as a source-to-source transformer and analyzer for

SMT-LIB. The first goal of SMTpp is to offer a framework to which developers of SMT solvers can
delegate computing tasks that are both necessary to be competitive (at least on some families of
benchmarks), and somehow irrelevant to the essence of SMT-solving. The second goal is to provide
facilities to simplify and classify SMT-LIB benchmarks.

1 Introduction
SMTpp is an initiative to separate symbolic and computational aspects of SMT solvers. Most
of the ideas developed in this paper come from two initial separated observations:
1. SMT solvers have many components: parser(s), normalizers, heuristics, decision proce-

dures, a SAT solver, etc. One may argue that some of these are not directly related to the
initial core of satisfiability modulo theories.

2. Curators of SMT-LIB [4, 3] sometimes need to verify scripts from the library and will not
want to have to do it manually, with a growing number of problems.

Observation 1 justifies simplification of SMT-LIB problems as a stand-alone tool. Observa-
tion 2 leads to the development of analyses and checks to reduce the load of taking care of a
growing SMT-LIB. This part is arguably the most developed of SMTpp.

SMTpp is coded in OCaml1, an impure functional language which has already been heavily
tested in the kind of symbolic analysis and program transformation we do. Frama-C [11], Coq2

or the OCaml compiler itself are good examples.
SMTpp has grown out of the veriT SMT solver [7] as a solution to externalize simplifications

and manipulations that are deemed less central to SMT solving, but also as a future easier way
to try experimental features in a higher level language than C. SMTpp is for now available from
http://www.verit-solver.org under the ISC license.

2 Related work
SatELite [16] is a preprocessor aimed at SAT-solving and has been shown useful to improve
overall performance for some classes of problems. Cok’s jSMTLIB [9] has the most similar scope

∗This work has been supported by the ANR/DFG project STU 483/2-1 SMArT, project ANR-13-IS02-0001
of the Agence Nationale de la Recherche, by the European Union Seventh Framework Programme under grant
agreement no. 295261 (MEALS), by the Région Lorraine, by CAPES PNPD grant no. 2314/2011, by the
CAPES/STIC AmSud MISMT and CNPq grant 573964/2008-4 (National Institute of Science and Technology
for Software Engineering—INES, www.ines.org.br).

1https://ocaml.org/
2https://coq.inria.fr/

1

http://www.verit-solver.org
www.ines.org.br
https://ocaml.org/

SMTpp Bonichon, Déharbe, Dobal and Tavares

as SMTpp. Thus we are using it as one measuring stick for SMTpp, both in terms of features and
efficiency. The main similarity is that both jSMTLIB and SMTpp aims at parsing, typing and
checking a SMT-LIB script before letting a SMT-solver handle the satisfiability search. There
are also significant differences in the goals of the projects. jSMTLIB offers a programmatic API
or an Elipse plug-in where SMTpp does not try to tackle these problems. Conversely, SMTpp’s
analyses and transformation goals are more ambitious.

The simplifications we present in Section 3 can also be present in a number of already
available tools. Similar ones are for example already implemented in veriT.

The logic detection feature described in the same Section 3 has some similarities to the
logic probing of Z3 [12]. It aims to be more precise and complete while retaining correctness.
All SMT provers detect undefined symbols out of pure necessity, and the extension to unused
symbols presented in Section 3 is commonly found in compilers and static analyses tools.

3 Modules
SMTpp is organized into a set of modules, whose functionality is as clearly delimited as possible.
As of now, these modules almost form a straight mapping to OCaml modules. The architecture
aims at implementing a set of transformations from abstract syntax tree (AST) to AST so
that most modules can be chained one after another. This idea is clearly borrowed from the
organization of compilers, where passes usually occur one after another.

Generic SMT-LIB handling As the goal of SMTpp is to be used in the context of SMT-
LIB, the first step was to develop a parser and a pretty-printer. The parser is generated with
Menhir [19] and can be used to verify the syntactic correctness of SMT-LIB scripts. It reports
the locations of errors in the file and supports the draft of SMT-LIB 2.5.

A generated parser has a maintenance advantage. Furthermore, Menhir’s standard library
also has some further pros such as parametric rules, which bear some resemblance with parser
combinators, having the possibility to name elements of the grammar, and nicer conflicts ex-
plication than the standard ocamlyacc tool.

SMT-LIB logics and theories are encoded as OCaml modules and form the basis of the other
modules, which all use the AST produced by the parser or an extended version thereof.

Multi-scripts generation SMTpp can be used to slice a script with multiple check-sat com-
mands with or without push or pop into several scripts with a single check-sat command. This
features make it possible to use solvers in non-incremental mode to verify benchmarks that
use SMT-LIB’s incrementality features. This option writes the AST to files instead of to the
standard output. Figure 1 shows on the right-hand side the result of applying this option to
the script on the left-hand side.

Logic detection The logic detection module can detect and set the logic of a SMT-LIB
script. It can be used as a verification tool such as in Section 4.2 or, to simply (re)set the logic
of a script. The latter function was the one that started this module: indeed, proof generating
tools can sometimes produce scripts without a beginning set-logic. Thus, we could compute a
logic among the available logics of SMT-LIB. This absence of set-logic has been for example
observed in the first version of the SMT-LIB scripts produced by the BWare project [15]. This
has been since then corrected, and SMTpp agrees with the choice of logic.

2

SMTpp Bonichon, Déharbe, Dobal and Tavares

(set-logic QF_LIA)
(declare-fun w () Int)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (> x y))
(assert (> y z))
(push 1)
(assert (> z x))
(check-sat)
(pop 1)
(push 1)
(check-sat)
(exit)

(set-logic QF_LIA)
(declare-fun w () Int)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (> x y))
(assert (> y z))
(assert (> z x))
(check-sat)
(exit)

(set-logic QF_LIA)
(declare-fun w () Int)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (> x y))
(assert (> y z))
(check-sat)
(exit)

Figure 1: Multi-scripts generation

Some SMT provers, like Z3 or CVC4 [1], still work without a set-logic. CVC4’s documenta-
tion states that it uses the "non-standard ALL_SUPPORTED logic". Z3 is a bit more clever, as
it probes the AST for hints of specific logics. Others, such as veriT, just do not work properly.

The logic detection module is similar in spirit to Z3’s logic probing. It aims to be correct,
in the sense that it will compute an over-approximation of the needed logic. In the presence
of arithmetic, this can be a problem, as the tool often quickly converges towards non-linear
arithmetic. Section 4.2 sums up the test results for this module.

Def/use analysis SMTpp has a simple feature to identified unused and undefined symbols.
While undefined symbols are definite errors, unused symbols are code smells that have no impact
on correctness. Although the code is still under development, it has generated good results on
SMT-LIB (see Section 4.3). This analysis is evolving towards a true data-flow analysis in order
to enable optimizations borrowed from compilers, such as constant propagation and common
subexpression elimination.

Simplifications The last module is a set of simplifications performed on the scripts and
formulas in QF_LRA family. The simplifications steps originate from the LassoRanker subfamily.
Each transformation alone is naive but the combination generates a nice boost in performance
for the two state-of-the-art SMT solvers Z3 and CVC4.

The most trivial simplifications use properties of neutral and absorbing elements to apply
the following rewriting steps:

t1 + · · ·+ tn + 0 op 0 ; t1 + · · ·+ tn op 0 (where op ∈ {<, >,≤,≥, =})
t1 ∗ · · · ∗ tn ∗ 1 op 0 ; t1 ∗ · · · ∗ tn op 0
t1 ∗ · · · ∗ tn ∗ 0 op 0 ; 0 op 0.

Afterwards, constraint subsumption is applied to rewrite the structure of formulas and reduce
their size. Given a set of conjunctive constraints, we identify pairs of constraints where one of
them is included in the other. For instance, from A < B ∧ . . . ∧ A ≤ B we remove the latter.

Next, the boolean structure can be simplified, similarly to arithmetic, through repeated
identifications of neutral and absorbing elements. This amounts to finding trivially true (>) or
false(⊥) conditions in the constraints involved, by applying the rules below:

3

SMTpp Bonichon, Déharbe, Dobal and Tavares

Before simplification After simplification
.

x4 + r1 = 0.0 ∧ . . . x4 + r1 = 0.0 ∧ . . .
x0 − x1 + r2 = 0.0 ∧ . . . x0 − x1 + r2 = 0.0 ∧ . . .
−x2 + x3 + r3 = 0.0 ∧ . . . −x2 + x3 + r3 = 0.0 ∧ . . .
x0 − x1 + 7.0x2 − 7.0x3 − x4 + d + s < 0.0 −r2 + 7.0r3 + r1 + d + s < 0.0

Figure 2: Simplification example

t ∧ ⊥ ; ⊥ t ∧ > ; t t ∨ ⊥ ; t t ∨ > ; >
In order to enhance the number of application of the previous step we also identify trivially

true / false conditions on linear constraints. Given n and m numbers, from n op m we derive
either true or false depending on n, m and op (<, >,≤,≥, =).

The last step applies to linear expressions and tries to reduce the size of the problem for
the arithmetic reasoner. This technique is suitable for benchmarks containing conjunctions of
linear constraints with variables local to the conjunction. A motivational example is shown in
Figure 2 where the xi are local variables and so candidates to be subtituted by others.

This technique amounts to performing Gauss elimination so that the matrix corresponding
to the linear constraints gets sparser after the transformation. Given a conjunction of linear
constraints, we identify all equalities where one side is zero. We then use occurence metrics to
identify in the linear expressions the variables that may be substituted.

We observe that the substitution method is dependent of the formula size: the bigger the
formula, the better the results. This is not surprising since this method was initially motivated
by large formulas. Note that this is a heuristic approach that may be counterproductive in
some cases. The impact of these simplifications is measured in Section 4.4. While the heuristics
works well in practice, we believe there is still room for improvement.

4 Experimental results
We conducted a series of experiments using SMT-LIB (101684 problems) and scripts from the
BWare project (12872)3 as benchmarks to evaluate the components described in Section 3. The
results below only show a short summary of the data. More detailed results and raw data are
available at http://github.com/ossanha/smt2015, as well as some documentation about how
to reproduce our experiments.

4.1 Parser efficiency
The basic functionality of SMTpp is to parse the SMT-LIB. Our goal is to be reasonably efficient
while easing maintenance. Thus, this lead to the choice of Menhir as parser generator and of a
clean parser which only generates the AST and does nothing else.

Efficiency is usually not that important whenever problems are handled in small quantities.
However, as we aim to be relevant for complete SMT-LIB analyses, even a small advantage has
more significance. For the evaluation, we have selected the following tools:

3Files available from http://bware.lri.fr/index.php/Benchmarks

4

http://github.com/ossanha/smt2015
http://bware.lri.fr/index.php/Benchmarks

SMTpp Bonichon, Déharbe, Dobal and Tavares

• Z3 4.3.2, patched to just parse the data, to give an idea about where we stand with respect
to what can be considered one of the most efficient generic SMT-solvers;

• Alt-Ergo[5] 0.99.1, patched to not elaborate the second AST, with –parse-only option and
smtlib24, two other tools written in OCaml (their parsers are generated with ocamlyacc);

• jSMTLIB, written in Java, the tool with the most similar goals to ours;
• SMTpp both in native and bytecode versions, and also native code with logic detection to

estimate the cost of this analysis. The bytecode version is expected to provide a fairer
comparison point with jSMTLIB than the native code one.

Expected results. We expect Z3, with a handwritten C++ parser, to come easily ahead and
jSMTLIB to finish last on most benchmarks, due to the cost of using the JVM and making some
analyses such as typing. Among OCaml-based parsers, we expect the native code SMTpp to be
more efficient both than Alt-Ergo and smtlib2 due to the use of Menhir. Indeed, according to
a note in Menhir’s documentation, parsers produced by Menhir can be 2 to 4 times faster than
the ones generated by ocamlyacc. Thus, observing this kind of relation between SMTpp and
smtlib2 or Alt-Ergo would mean that the main gain comes from the choice of parser generator,
and are transferable without much effort to those other tools.

Tool comparisons. When comparing two tools with the same return code, a tool is said to
beat another on a benchmark if the time difference is at least 20% and higher than 0.02 second
or if one fails. A match is declared a draw if draws represent at least half the scores and no tool
has more than twice the number of wins of the other. Otherwise, the number of wins decides
the winner. The winner of a confrontation scores 2 points, the loser 0; if it is draw, both score
1 point. In Figure 3 the number is the ranking of the tool in the corresponding category.

Tools ALIA AUFLIA AUFLIRA AUFNIRA BV LIA LRA NIA NRA QF_ABV QF_ALIA QF_AUFBV QF_AUFLIA QF_AX QF_IDL QF_LIA
smtlib2 1 2 4 1 4 1 1 1 1 6 5 5 1 1 5 5
Z3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Alt-Ergo 1 6 6 1 6 1 1 1 1 5 4 6 1 1 2 2
SMTpp (bytecode) 1 5 4 1 1 1 1 1 1 3 5 4 1 1 5 5
SMTpp (native) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3
SMTpp (native,detect) 1 2 1 1 4 1 1 1 1 3 1 3 1 1 4 4
jSMTLIB 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Tools QF_LRA QF_NIA QF_NRA QF_RDL QF_UF QF_UFBV QF_UFIDL QF_UFLIA QF_UFLRA QF_UFNRA UF UFBV UFLIA
smtlib2 6 1 6 6 6 5 6 1 6 5 5 5 6
Z3 1 1 1 1 1 1 1 1 1 1 1 1 1
Alt-ergo 3 1 1 2 3 5 2 1 3 2 1 5 1
SMTpp (bytecode) 5 1 1 5 4 4 5 1 5 5 5 4 5
SMTpp (native) 2 1 1 2 2 2 2 1 1 2 1 2 1
SMTpp (native,detect) 4 1 1 4 4 3 2 1 3 2 1 3 1
jSMTLIB 7 7 7 7 7 7 7 7 7 7 7 7 7

Figure 3: Parser rankings on SMT-LIB

The actual results, without reading too much into them, confirm the expectations. The clear
winner is Z3, followed by native SMTpp and Alt-Ergo. Activating logic detection keeps SMTpp
native slightly faster than its bytecode version. The difference between most tools are actually
small and have been observed to be subject to variations. The only significant difference comes
from jSMTLIB, which always ranks last. Some of its relative slowness can be attributed to the
additional analyses performed, some of it to the use of Java. These results only show that
the choice of a generated parser within a high-level language such as OCaml is relevant to the
challenge at hand. Even bytecode SMTpp can be competitive with native code Alt-Ergo.

4Available from http://www.cs.uiowa.edu/~astump/software/ocaml-smt2.zip

5

http://www.cs.uiowa.edu/~astump/software/ocaml-smt2.zip

SMTpp Bonichon, Déharbe, Dobal and Tavares

4.2 Logic detection in SMT-LIB
We ran the detection module on SMT-LIB and BWare files as a way to get a first feedback on
the quality of the detection and root out a number false positives. We have seen in Section 4.1
that this analysis is not very time-consuming, mainly due to approximations.

SMTpp found that a bit more than 5% of SMT-LIB has logic declarations that overestimates
the logic used in the script. At the same time, 7% of the logics were overestimated by SMTpp,
saying for example that the arithmetic is non-linear whereas it is declared to be linear. These
results are summed up in Figure 4.

0 10 20 30 40 50

AUFLIA

NIA

QF_UFBV

QF_AUFBV

ALIA

QF_UFNRA

LIA

4

9

31

37

42

43

46

0

0

0

0

0

0

0

4

0

0

0

11

16

27

AUFLIA, NIA, QF_UFBV, QF_AUFBV, ALIA, QF_UFNRA, LIA

#scripts

#over

#under

0 100 200 300 400 500 600

QF_ALIA

BV

UFBV

QF_RDL

QF_UFIDL

QF_AX

QF_UFLIA

126

191

191

255

441

551

598

16

0

0

2

404

0

1

4

10

70

0

0

0

0

QF_ALIA, BV, UFBV, QF_RDL, QF_UFIDL, QF_AX, QF_UFLIA

#scripts

#over

#under

0 500 1000 1500 2000 2500 3000 3500 4000

LRA

QF_AUFLIA

AUFNIRA

QF_UFLRA

QF_LRA

QF_IDL

NRA

621

1009

1495

1630

1682

2188

3813

423

0

0

1180

1278

13

0

12

1002

519

440

10

0

0

LRA, QF_AUFLIA, AUFNIRA, QF_UFLRA, QF_LRA, QF_IDL, NRA

#scripts

#over

#under

0 5000 10000 15000 20000

UF

QF_LIA

QF_UF

QF_NIA

QF_NRA

UFLIA

QF_ABV

AUFLIRA

5748

6141

6650

9359

11540

12138

15091

20014

0

3958

0

0

0

310

0

0

32

121

0

0

0

1972

0

1370

UF, QF_LIA, QF_UF, QF_NIA, QF_NRA, UFLIA, QF_ABV, AUFLIRA

#scripts

#over

#under

Figure 4: SMTpp logic detection on SMT-LIB

The first kind of difference found consists in discrepancies between the subsets of arithmetic
declared and inferred, due to over-approximations of the tool. As of now, we do not consider
this to be a problem and consider that the SMT-LIB classification is right in this case. We know
that SMTpp often triggers a non-linear arithmetic verdict as a quick safe over-approximation.

Most of the under-approximations that SMTpp detects can be easily verified but even ver-
ifying 5% of SMT-LIB is tedious business due to the sheer size of the library itself. Here is a
digest of some elements we have checked:
• 1368 scripts in AUFLIRA/FFT and AUFLIRA/why do not use the word Array in their body.

The explanation is that they were automatically generated with this overestimated logic,
but they should be UFLIRA: a category to be created?

• There is a whole family of scripts under UF/grasshopper that are fully propositional, if
that, in that they mainly sport a single (assert false) assertion.

• More surprisingly, a number of scripts in QF_UFLRA, almost 20%, do not use arithmetic
at all, all they do is define two boolean constants, assert them and check satisfiability.

• Most of QF_AUFLIA only uses the Int sort and no arithmetic functions and a fourth of the
problems have neither free sorts nor functions.

• We also found a number of arithmetic-based problems which were declared to be linear
and do not even use the + symbol. These are inferred to be difference logic. This is not

6

SMTpp Bonichon, Déharbe, Dobal and Tavares

always true. However, the difference between what constitutes difference logic or linear
arithmetic is not always clear cut in SMT-LIB. Indeed, we have found a number of over-
approximations to linear arithmetic due to the presence of + in difference logic directories,
even though this symbol should not occur according to the category definition.

This module is still a work in progress, and we need to be cautious about the soundness of
all the approximations we make. These first results are an encouraging step to continue the
development of this part of SMTpp.

4.3 Unused symbols in SMT-LIB
As in the case of the logic inference module, we tested the def/use module on SMT-LIB, as a
way to check the correctness of the analysis while possibly getting some information on SMT-
LIB. We expect this analysis to help SMT-LIB back-ends generate trimmed down scripts. This
section focuses on unused symbols since undefined symbols do not occur in SMT-LIB.

Actually, a certain number of scripts do have unused symbols. While this has no effect
on the soundness of the satisfiability of the problem, it would be worthwhile to sanitize the
offending files. One of the causes is that automatically generated scripts often include the same
exact prelude. The files generated for the BWare project are known to have this type of issue.
Figure 5 sums up our experimental results for SMT-LIB.

This analysis is easy (but slow) to check with grep -c. This verification helped us find the
third point below. Here is a short list of observations.
• SMT-LIB scripts of the BWare projects all have a common prelude which always has more
declarations than necessary: all of them have unused symbols.

• A number of scripts, such as QF_LIA/fft/Sz64_1160.smt2, bind variables by let constructs
without using them afterwards.

• The entire subdirectory LRA/keymaera exhibits a pattern of declaring a constants, then
binding a variable with the same name and type by an exists.

• QF_ABV/stp has big (≈ 60Mb) scripts in which 1/3 to 1/2 is unused declarations. Re-
moving these will at least speed up the parsing phase.

4.4 Simplifications in QF_LRA
We elected all formulas from QF_LRA and solved them using CVC4 and Z3, both with and
without applying the simplifications described in Section 3. All solvers have a timeout of 90
seconds. The preprocessing helped both solvers solve more formulas. Whereas CVC4 solved 45
more instances, Z3 solved 27 more. In addition both solvers have improved the cumulative time
used for solving the instances to the LassoRanker family, where the work finds its motivation.
However, we also observed some slight performance improvement on the whole QF_LRA family.
These results, shown in Figure 6, confirm that it might be worth investing efforts on identifying
generic preprocessing steps in order to boost solvers performance.

In the actual state of SMTpp, preprocessing times is less than 20% of time spent for more
than half of solved problems, and less than 40% for 75% of solved instances. On average, the
time taken on common solved instances is similar, even though there are outliers on both sides.

As shown in Figure 6, a time limit around 90 seconds exhibits more unique successes for Z3
than for SMTpp + Z3. This might be because of SMTpp’s unstable state but further investiga-
tions might also uncover a more profound reason. As the time limit increases, the number of
solved instances show a distinct advantage in using a preprocessed problems.

7

SMTpp Bonichon, Déharbe, Dobal and Tavares

0 10 20 30 40 50

AUFLIA

NIA

QF_UFBV

QF_AUFBV

ALIA

QF_UFNRA

LIA

4

9

31

37

42

43

46

2

0

0

4

21

0

0

AUFLIA, NIA, QF_UFBV, QF_AUFBV, ALIA, QF_UFNRA, LIA

#scripts

#unused

0 100 200 300 400 500 600

QF_ALIA

UFBV

BV

QF_RDL

QF_UFIDL

QF_AX

QF_UFLIA

126

191

191

255

441

551

598

0

0

0

0

0

0

17

QF_ALIA, UFBV, BV, QF_RDL, QF_UFIDL, QF_AX, QF_UFLIA

#scripts

#unused

0 500 1000 1500 2000 2500 3000 3500 4000

LRA

QF_AUFLIA

AUFNIRA

QF_UFLRA

QF_LRA

QF_IDL

NRA

621

1009

1495

1630

1682

2188

3813

596

0

1013

990

3

17

3813

LRA, QF_AUFLIA, AUFNIRA, QF_UFLRA, QF_LRA, QF_IDL, NRA

#scripts

#unused

0 5000 10000 15000 20000

UF

QF_LIA

QF_UF

QF_NIA

QF_NRA

UFLIA

QF_ABV

AUFLIRA

5748

6141

6650

9359

11540

12138

15091

20014

2

36

3401

77

0

5441

577

19915

UF, QF_LIA, QF_UF, QF_NIA, QF_NRA, UFLIA, QF_ABV, AUFLIRA

#scripts

#unused

Figure 5: Scripts with unused symbols detected in SMT-LIB

100 0 100 200 300 400 500 600

Z3 (s)

100

0

100

200

300

400

500

600

S
M

T
p
p
 +

 Z
3

 (
s)

LassoRanker/Z3: common solved instances

0 100 200 300 400 500

Time (s)

0

20

40

60

80

100

120

#
 i
n
st

a
n
ce

s

LassoRanker/Z3 : success by one combination only

SMTpp + Z3

Z3

100 0 100 200 300 400 500 600

CVC4 (s)

100

0

100

200

300

400

500

600

S
M

T
p
p
 +

 C
V

C
4

 (
s)

LassoRanker/CVC4: common solved instances

0 100 200 300 400 500

Time (s)

0

20

40

60

80

100

120

140

160

#
 i
n
st

a
n
ce

s

LassoRanker/CVC4 : success by one combination only

SMTpp + CVC4

CVC4

Figure 6: CVC4 and Z3 with or without SMTpp in LassoRanker

5 Conclusion
We have presented SMTpp, a preprocessor and analyzer for SMT-LIB, detailing its current
features and performances. We think it is already usable by third-party, though with caution.
Benchmarks processed with other tools seem to confirm the current features. The analyses
which are currently working could already be used as post-processor for tools that automatically
generate SMT-LIB scripts to remove unnecessary definitions or check that the logic declared is
not too over-inflated.

8

SMTpp Bonichon, Déharbe, Dobal and Tavares

Further developments on our roadmap include, but are not limited to:

Simplifications Other simplifications are already known to enhance the performances of SMT-
solver, such as symmetry-related simplifications [14] or if-then-else conversions [17]. The
latter is an especially interesting goal.

Script transformations Delta-debuggers [8, 18] and scramblers [2] are in the toolbox of every
solver developer. They involve source-to-source tranformations that could be implemented
as modules of SMTpp. We have for example started to work on an obfuscator and an
incremental to non-incremental mode transformer.

Types and polymorphism The current SMTpp lacks a typer: its implementation is one of
our priorities in order to enhance the precision of analyses and normalizations performed.
The polymorphic notations and monomorphization process presented in [6] are a good can-
didate to be included in SMTpp. This would avoid the need for SMT-solvers to implement
support for this feature.

veriT support Some preliminary but very alpha work has been done on embedding SMTpp
into veriT. The crucial forthcoming steps are linking SMTpp’s AST to veriT’s internal
DAG representation and evaluating the performance cost of such a deeper embedding.

Towards a better framework The current version of SMTpp is simple but could already
support some refactoring towards making a platform for preprocessors and analyzers of
SMT-LIB. We would like to explore having dynamic plug-ins, as permitted for example
by the C analyzers platform Frama-C [10].

Tactic language A more distant, and harder, but exciting challenge to tackle is to include
some means to guide SMT-solvers from SMTpp, as presented by Mendonça de Moura and
Passmore [13].

Acknowledgments. We would like to thank the anonymous reviewers, as well as Pascal
Fontaine for stimulating this project and for many fruitful discussions.

References
[1] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and

C. Tinelli. CVC4. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd Int’l Conf. Computer
Aided Verification (CAV), volume 6806 of LNCS, pages 171–177, 2011.

[2] C. Barrett, M. Deters, L. de Moura, A. Oliveras, and A. Stump. 6 years of SMT-COMP. Journal
of Automated Reasoning, 50(3):243–277, 2013.

[3] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2010.

[4] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In A. Gupta and
D. Kroening, editors, Proceedings of the 8th International Workshop on Satisfiability Modulo The-
ories (Edinburgh, UK), 2010.

[5] F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, S. Lescuyer, and A. Mebsout. The Alt-Ergo
Automated Theorem Prover, 2008. http://alt-ergo.lri.fr/.

[6] R. Bonichon, D. Déharbe, and C. Tavares. Extending SMT-LIB v2 with λ-terms and polymor-
phism. In P. Rümmer and C. M. Wintersteiger, editors, Proc. 12th Int’l Workshop on Satisfiabil-
ity Modulo Theories (SMT), volume 1163 of CEUR Workshop Proceedings, pages 53–62. CEUR-
WS.org, 2014.

9

http://alt-ergo.lri.fr/

SMTpp Bonichon, Déharbe, Dobal and Tavares

[7] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: An open, trustable and
efficient SMT-solver. In R. A. Schmidt, editor, Proc. 22nd Int’l Conf Automated Deduction -
CADE-22, volume 5663 of LNCS, pages 151–156, 2009.

[8] R. Brummeyer and A. Biere. Fuzzing and Delta-Debugging SMT Solvers. In Proc. 7th Int’l
Workshop on Satisfiability Modulo Theories (SMT), page 5, 2009.

[9] D. R. Cok. jSMTLIB: Tutorial, Validation and Adapter Tools for SMT-LIBv2. In Proc. 3rd Int’l
Conf. on NASA Formal Methods.

[10] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C - A
software analysis perspective. In G. Eleftherakis, M. Hinchey, and M. Holcombe, editors, Proc
10th Int’l Conf. Software Engineering and Formal Methods (SEFM), volume 7504 of LNCS, pages
233–247, 2012.

[11] P. Cuoq, J. Signoles, P. Baudin, R. Bonichon, G. Canet, L. Correnson, B. Monate, V. Prevosto,
and A. Puccetti. Experience report: OCaml for an industrial-strength static analysis framework.
In G. Hutton and A. P. Tolmach, editors, Proc. 14th ACM SIGPLAN Int’l Conf on Functional
programming (ICFP), pages 281–286, 2009.

[12] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In C. R. Ramakrishnan and J. Rehof,
editors, Proc 14th Int’l Conf on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 4963 of LNCS, pages 337–340, 2008.

[13] L. M. de Moura and G. O. Passmore. The strategy challenge in SMT solving. In M. P. Bonacina
and M. E. Stickel, editors, Automated Reasoning and Mathematics - Essays in Memory of William
W. McCune, volume 7788 of LNCS, pages 15–44, 2013.

[14] D. Déharbe, P. Fontaine, S. Merz, and B. W. Paleo. Exploiting symmetry in SMT problems.
In N. Bjørner and V. Sofronie-Stokkermans, editors, Proc. 23rd Int’l Conf Automated Deduction
(CADE-23), volume 6803 of LNCS, pages 222–236, 2011.

[15] D. Delahaye, C. Dubois, C. Marché, and D. Mentré. The BWare project: Building a proof platform
for the automated verification of B proof obligations. In Y. A. Ameur and K. Schewe, editors,
Proc 4th Int’l Conf. Abstract State Machines, Alloy, B, TLA, VDM, and Z (ABZ), volume 8477
of LNCS, pages 290–293, 2014.

[16] N. Eén and A. Biere. Effective preprocessing in sat through variable and clause elimination. In
Proc. 8th Int’l Conf. on Theory and Applications of Satisfiability Testing, SAT’05, pages 61–75,
Berlin, Heidelberg, 2005.

[17] H. Kim, F. Somenzi, and H. Jin. Efficient Term-ITE Conversion for Satisfiability Modulo Theories.
In O. Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT 2009, volume 5584
of Lecture Notes in Computer Science, pages 195–208. Springer Berlin Heidelberg, 2009.

[18] A. Niemetz and A. Biere. ddSMT: A Delta Debugger for the SMT-LIB v2 Format. In Proc. 11th
Int’l Workshop on Satisfiability Modulo Theories (SMT), pages 36–45, 2013.

[19] F. Pottier and Y. Régis-Gianas. Menhir, Dec. 2005.

10

	Introduction
	Related work
	Modules
	Experimental results
	Parser efficiency
	Logic detection in SMT-LIB
	Unused symbols in SMT-LIB
	Simplifications in QF_LRA

	Conclusion

