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Abstract

The QF UF category of the SMT-LIB test set contains many formulas with symmetries,
and breaking these symmetries results in an important speedup [8]. This paper presents
SyMT, a tool to find and report symmetries in SMT formulas. SyMT is based on the
reduction of the problem of detecting symmetries in formulas to finding automorphisms in
a graph representation of these formulas. The output of SyMT may be used to improve
SMT formulas to enforce the SMT solver to examine only one assignment out of many
symmetric ones. We show that the classic propositional symmetry breaking technique can
be lifted to SMT and yields a generic technique to break the symmetries found by SyMT.

Experiments on a large part of the SMT-LIB show that symmetries are pervasive in
most categories.

1 Introduction

Consider a propositional formula ϕ(p, q) with propositional variables p and q, and symmetric
by permutation of p and q. Propositional symmetry breaking [12] eliminates symmetry, e.g. by
adding clause p ⇒ q, since there is a Boolean model of ϕ(p, q) if and only if there is a model
such that p⇒ q. Searching for models such that p ∧ ¬q is unnecessary. Such transformation is
a sound reduction of the search space for the SAT-solver.

Now, consider the first-order formula ϕ(f(a) = f(b), a = b) with the standard interpretation
of equality. It is clear that there exists no model such that f(a) 6= f(b)∧ a = b holds, although
f(a) = f(b) ∧ a 6= b is satisfiable; if ϕ(p, q) has only models such that exactly one proposition
in {p, q} is true, ϕ(f(a) = f(b), a = b) ∧ (f(a) = f(b) ⇒ a = b) is unsatisfiable. This
simple example shows it is not sound to break symmetry of an SMT formula based on the
symmetry of its propositional structure alone. Essentially the problem is that the abstraction
does not take the theory into account. However, we show in the paper that it is sound to break
symmetries stemming from permutation of uninterpreted symbols, similarly to what is done for
propositional logic.

∗Note to the reviewers: SyMT has been the subject of a previous submission (and rejection) to CADE, as
a tool paper. We addressed some of the issues (but not all, hence this w.i.p. submission) highlighted by the
CADE reviewers. Compared to the CADE submissions: (a) more information about the translation is given
(b) we implemented an interface with another graph isomorphism tool, Bliss (c) various issues in the tool were
fixed, some of them having been highlighted by reviewers (d) results have been updated. We are still working
on some issues in the tool that prevent to find some symmetries. When corrected, the tool would find even
more symmetries. Future works are given in paragraph 2 in conclusion; they mostly cover the issues given by
the CADE reviewers.
†This work has been partially supported by the European Union Seventh Framework Programme under grant

agreement no. 295261 (MEALS), and by CNPq/INRIA project SMT-SAVeS, and CNPq grant 573964/2008-4
(National Institute of Science and Technology for Software Engineering—INES).
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Previous results show [8] that exploiting symmetries in SMT formulas can lead to an im-
pressive decrease in the size of the search space, and thus to a considerable increase in efficiency.
Techniques described in [8] are, however, highly heuristic and vulnerable to formula rewriting.
Graph automorphism detection algorithms [11, 9, 10] have been used to find symmetries in
propositional formulas. Based on such techniques we developed SyMT, a tool to find and re-
port symmetries in SMT formulas. In essence, the tool rewrites the SMT formula into a graph
while preserving the syntactic symmetries. The resulting graph is suitable for input to graph
isomorphism tools; in particular, there is no ordering on nodes’ children. The output of SyMT
provides to users the information they need to rewrite their SMT formulas so that they have no
symmetries and are easier to solve. Such transformation is highly heuristic and domain-specific
and it is the SMT user that is in the best position to realize it. In future work, we however
plan to design of concrete generic symmetry breaking heuristics, that would provide further
indication to users about how they can improve their formulas.

Outline. We first give a formal basis for symmetry breaking in SMT, then present our SyMT
tool for detecting symmetries in SMT formulas. Section 3 also introduces the translation from
SMT formulas to graphs. Some statistics on symmetry detection on a large part of the SMT-
LIB [5] are given. They clearly show that (1) graph automorphism algorithms scale for SMT
formulas, and (2) the SMT-LIB contain many highly symmetric formulas.

2 Symmetries in SMT

We assume knowledge of basic notions of permutation group theory, such as generators and
cyclic forms. We use the standard notions of multi-sorted logic, term, formula, and interpreta-
tion commonly used in the context of SMT. A theory is a set of interpretations. Consider a finite
set S of uninterpreted symbols (constants, functions or predicates), and a bijective function σ
on S, that maps every symbol to a symbol of the same sort (i.e., arity and sorts of arguments
and image should match). Function σ extends naturally to terms and formulas, and tσ denotes
σ applied to term or formula t, just like a higher-order substitution would, considering symbols
in S as variables. σ can also be applied on an interpretation I to yield interpretation Iσ similar
to I except that Iσ[s′] = I[s] whenever sσ = s′. The identity function is denoted σI .

We say that σ is a symmetry for formula ϕ if ϕσ is syntactically equal to ϕ up to satisfiability
preserving rewritings, e.g. using commutativity of some interpreted symbols. Notice that if σ
is a symmetry for ϕ, so is any of its powers σi, and in particular σ−1 is also a symmetry of
ϕ since there exists n such that σn = σI . The case where σ is its own inverse (σ2 = σI) is
a particular, though extremely frequent, case. It occurs when there is a group that contains
all permutations of elements in a subset of S. In our experiments on the SMT-LIB test bed,
we have observed that most symmetry groups found have a set of generators that are their
own inverse; in the following we will only consider such symmetries. Let us thus consider a
symmetry σ such that σ2 = σI for a formula ϕ. For every interpretation I of ϕ we have
Iσ[ϕ] = I[ϕ] (using straightforward structural induction). Consider now a set of atoms (not
necessarily simple propositional variables) p1, . . . pn and their image q1 = p1σ, . . . qn = pnσ.
If ϕ is satisfiable in a model M then there exists a model of ϕ that furthermore satisfies the
following formulas for i ∈ {1..n}:

ψi =def

( ∧
1≤j<i

pj ≡ qj
)
⇒ (pi ⇒ qi).
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This model is indeed eitherM orMσ. Assume k is the smallest value for whichM[pk] 6=M[qk],
and consider ψk. IfM[pk] = ⊥ andM[qk] = > thenM satisfies ψk, as well as all ψi with i 6= k.
Now, if M[pk] = > and M[qk] = ⊥ then Mσ is a model of ϕ such that Mσ[pi] =Mσ[qi] for
i < k and Mσ[pk] = > and Mσ[qk] = ⊥. The model Mσ of ϕ thus satisfies ψi for i ∈ {1..n}.

It is well known (see, e.g., [12]) that the formulas ψi can serve to break symmetry for
propositional formulas. The above shows that this extends to SMT. This leaves out, however,
many choices for the set of atoms pi: the insight of the SMT user is usually necessary to make
the best choice.

3 SyMT Implementation

SyMT is a command line tool implemented in C that detects symmetries in SMT formulas,
taking into account the commutativity of conjunction, disjunction, addition, multiplication and
equality. Given an input SMT formula, SyMT proceeds by creating a colored graph from it
and then uses a graph automorphism component to detect the generators of the automorphism
group of the colored graph. In particular, SyMT uses Saucy 3.0 [10] as the graph automorphism
component. Integration with Saucy is done via Saucy’s C API. SyMT also provides simplifica-
tion capabilities on the input formulas, some of which involve using theory reasoning (and thus
may unfortunately fail on large instances). Simplification of the input formula is important be-
cause it may uncover hidden symmetries and remove trivial symmetries, e.g., symmetries that
do not involve uninterpreted symbols. Simplifications include simple rewriting, simplification
of entailed literals, and some normalization of terms and formulas.

Example 1. Hereunder is the command line and output of SyMT on a formula of the QF UF
category of SMT-LIB:

./SyMT --enable-simp smt-lib2/QF UF/NEQ/NEQ004 size4.smt2

(p7 p9)(c12 c13)

(c 3 c 1)

(c 2 c 1)

(c 0 c 1)

SyMT finds four generators for the symmetry group, and prints them in cyclic form. There is
the full group of permutations of c_0, c_1, c_2, c_3, generated by the last three generators, as
well as a further symmetry that permutes unary predicates p7 and p9, while in the same time
permutes c12 and c13. This last symmetry was not detected with the heuristic techniques of [8].

Reduction to the colored graph automorphism problem is the most successful technique for
detecting symmetries in propositional formulas in clausal form, primarily due to the availabil-
ity of efficient tools to detect graph automorphisms (e.g., [11, 9, 10]) that are fast and easy
to integrate. Several reductions from propositional formulas to colored graphs have been pro-
posed [6, 7, 1], all based on the same idea: to use the formula to construct a colored graph
whose automorphism group is isomorphic to the symmetry group of the formula. Also, exten-
sions to other logics, e.g., QBF [3] and modal logics [2], have been proposed, further showing
the applicability of this technique. Nevertheless, as far as we know, there is no extension of this
technique to the case of SMT formulas.

We now present the reduction algorithm to colored graphs for SMT formulas. The reduction
is as a two-stage process. First, SyMT constructs the syntax direct acyclic graph of the formula
with some additional nodes. Second, colors are introduced, to avoid spurious symmetries.
Colors are represented as natural numbers. Let ϕ be an SMT formula. The colored graph G(ϕ)
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is constructed recursively as follows (= and other predicates, and propositional symbols are
considered as functions and constants ranging over Booleans):

• Graph Construction:

1. For each symbol, add a unique symbol node.

2. For each (constant or propositional) term without argument, the root node is the
symbol node introduced above.

3. For each term f(t1, . . . , tn) of arity n > 0,

(a) Add a root node for f(t1, . . . , tn). Add an edge from the root node to the
(unique) symbol node for f .

(b) If the function is commutative (e.g. ∧, ∨, ≡, =, +, ∗), add an edge from the root
node to the root node of ti (i ∈ {1..n}). Quantifiers, as commutative operators,
are handled similarly (coloring discriminates the matrix).

(c) If the function is not commutative:

i. For each argument ti, add an argument node and an edge from this node to
the root node of ti.

ii. Add an edge from the argument node of ti to the argument node of ti+1 (1 ≤
i < n). These edges represent the ordering of the arguments in f(t1, . . . , tn).

iii. Add an edge from the root node to the argument node of t1.

• Graph Coloring:

1. Argument nodes are assigned a specific, unique color.

2. Uninterpreted symbol nodes and root nodes are assigned a color based on their sort
(Boolean being considered as any other sort).

3. Each interpreted symbol node is assigned a unique color.

Example 2. Consider formula ϕ = p(f(a, b)) ∨ p(f(b, a)) ∨ p(g(a, b)) ∨ p(g(b, a)), where p is
a unary predicate and f, g, a and b are uninterpreted symbols. The associated colored graph,
G(ϕ), is shown in Figure 1 (colors are represented by numeric labels and node shapes in the
figure).

Theorem 1. Let ϕ be an SMT formula and G(ϕ) the colored graph constructed from it. Then,
every automorphism of the graph G(ϕ) is a symmetry of the formula ϕ.

Proof sketch: This follows directly by structural induction and from the following observations:

- The graph G(ϕ) is the syntax directed acyclic graph of ϕ plus additional nodes.

- For terms, f(t1, . . . , tn) of arity > 0, the coloring of nodes, and the combination of root
nodes and symbol nodes ensures that only symbols nodes of the same sort (i.e., same arity
and same argument sorts) and with the same number of occurrences can be permuted.

- For terms without arguments (constants and predicates), the coloring of symbol nodes
and the existence of argument nodes ensures that only symbols of the same sort and
occurring the same number of times in the same argument positions can be permuted.
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Figure 1: Graph representation of p(f(a, b)) ∨ p(f(b, a)) ∨ p(g(a, b)) ∨ p(g(b, a)).

Finally, to reconstruct a formula symmetry from a graph automorphism, we just need to restrict
the graph automorphism to symbol nodes.

Notice that the converse of Theorem 1 is not true: the proposed graph construction do
not find all the symmetries of the input formula. For example, consider the formula ϕ =
f(a, b) ∧ g(c, d) where a, d are of some sort and b, c of another sort (with appropriate sorts for
f and g. The permutation σ = (f g)(a c)(b d) is a symmetry of ϕ. Nevertheless, we can not
detect it in the graph G(ϕ). This is due to the fact that symbol nodes are colored based on
the symbol sort, and this prevent the automorphism component from detecting permutations
involving symbols of different sorts. Nevertheless, from a practical point of view, symmetries
involving symbols of different sorts are rather unnatural and do not arise often.

4 Symmetries in SMT-LIB

We test SyMT against 19 categories1 from SMT-LIB [5] to investigate the existence of sym-
metries and evaluate the efficiency of our tool. All tests are run on an Intel Xeon X3440 with
16GB, using the four cores simultaneously and we report the cumulative core time (roughly
4 times the CPU time). Three different configurations of SyMT were tested. Configuration 1
has no simplification: the formula is parsed and converted to a graph for automorphism de-
tection. Configuration 2 uses trivial syntactic simplifications. Configuration 3 enables stronger
simplifications, using an SMT engine, e.g., simplification of atoms implied by unit clauses. Con-
figuration 2 may fail (with no symmetry reported) because the simplification algorithm used is
not linear with respect to the input formula. However it often reveals symmetries hidden by ir-
relevant garbage easily removed by the simplification procedure. Configuration 3 is likely to fail
on very large formulas, but again, it may reveal hidden symmetries. Simplification sometimes
reduces a formula to false, in which case no symmetry is reported.

Among the 19 analyzed categories, three (LRA, QF UFLRA, QF UFNRA) do not reveal
symmetries with SyMT. Of the only five formulas in UFLRA, one has symmetries. The oth-
ers 14 categories presented a significant number of symmetries in at least one of the tested

1Bit vectors are not supported by our parser.
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Category #Inst #Sym[1] #Sym[2] #Sym[3] #Sym[P] Avg[GS] Time

AUFLIA 6480 6212 6231 5941 6258 134.00 378.79

AUFLIRA 19917 15779 16475 12500 16476 1.08 9.13

AUFNIRA 989 985 985 923 985 1.00 0.41

QF AUFLIA 1140 2 71 77 78 1.00 0.72

QF AX 551 22 22 22 22 1.00 0.37

QF IDL 1749 348 526 683 756 12745.43 327.95

QF LIA 5938 728 1172 524 1200 104.55 486.19

QF LRA 634 73 150 208 210 110.49 29.06

QF NIA 530 169 169 168 169 5.92 3.92

QF NRA 166 9 43 43 43 1.00 0.23

QF RDL 204 0 0 24 24 0.00 10.13

QF UF 6639 250 3638 375 3638 44.00 34.58

QF UFIDL 431 19 175 186 189 1.00 2.70

QF UFLIA 564 0 198 198 198 0.00 0.45

UFNIA 1796 1062 1061 1058 1070 47.08 543.26

Table 1: Symmetries in SMT-LIB

configurations. Table 1 summarizes the results obtained for these 14 categories. For each cate-
gory we report the number of instances (#Inst), the number of instances that have symmetries
for the various simplification configurations (#Sym[1], #Sym[2] and #Sym[3]), the number of
instances that have symmetries in at least one of the configurations (#Sym[P]), the average
logarithm in base 2 of the size of the symmetry group (Avg[GS]) for Configuration 1, and the
total time in seconds required to analyze all the instances (Time) also for Configuration 1. It is
clear from Table 1 that the SMT-LIB has many highly symmetric formulas, in most categories.
The cumulative time required to build the graph and detect the symmetries is negligible in
all categories. We do not output the times for other configurations since there are timeouts
and time is dominantly spent in the simplification modules, so these numbers give little insight
about symmetry detection itself. The above experiments are using Saucy as the graph iso-
morphism detection engine. We also investigated Bliss as an alternative, with similar results.
Unfortunately, this alternative is currently unavailable for users because of license issues.

The current tool fails to find some symmetries in the QF UF category. We are investigating
the issue.

5 Conclusions and future work

We presented SyMT, a tool to detect symmetries in SMT formulas. SyMT is based on the
reduction of the symmetry detection problem to graph automorphism detection. We presented
the corresponding graph construction algorithm and showed that symmetry detection scales on
SMT formulas by providing experimental results on executions of the tool on many SMT-LIB
categories. We also showed that propositional symmetry breaking can be lifted to the SMT
case, which provides a simple symmetry breaking mechanism for SMT.

In future work we will address the issue of symmetry breaking. We want to study the
structures of symmetry groups found by SyMT. A deeper understanding of these structures
may provide useful information to develop generic symmetry breaking mechanisms. We also
believe that, to fully exploit the presence of symmetries in formulas, ad hoc, application-tailored,
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heuristics are also necessary. We will use SyMT to mine the SMT-LIB to find symmetries, and
we will devise appropriate heuristics integrated into an SMT symmetry breaking pre-processor.
We expect this will result in a significant speed up for solving the formulas in the repository,
since our experiments show symmetries are pervasive in many SMT test sets. We plan to carry
out a similar analysis on the TPTP library [13].

We are aware that symmetry breaking is essentially heuristic, and a compilation of ad hoc
heuristics would not be a silver bullet: the expertise of the user is generally the best approach
to break symmetries. The current version of SyMT already provides the SMT users with a
simple, yet powerful, tool to detect symmetries.

The tool and its source are available for download under the BSD License at http://www.

veriT-solver.org/SyMT. It uses the Saucy 3.0 source code, distributed under its own specific
license.

Acknowledgements: We thank Stephan Merz for interesting discussions, and Cesare Tinelli
for encouraging to investigate further symmetries in SMT. We are very grateful to the Saucy
developers for their tool.
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