
Integrating SMT solvers in Rodin I

David Déharbea, Pascal Fontaineb, Yoann Guyotc, Laurent Voisind

aUniversidade Federal do Rio Grande do Norte, Natal, RN, Brazil
bUniversity of Lorraine, Loria, Inria, France

cCetic, Belgium
dSysterel, France

Abstract

Formal development in Event-B generally requires the validation of a large num-
ber of proof obligations. Some tools automatically discharge a significant part
of them, thus augmenting the efficiency of the formal development. We here in-
vestigate the use of SMT (Satisfiability Modulo Theories) solvers in addition to
the traditional tools, and detail the techniques used for the cooperation between
the Rodin platform and SMT solvers.

Our contribution is the definition of a translation of Event-B proof obliga-
tions to the language of SMT solvers, its implementation in a Rodin plug-in,
and an experimental evaluation on a large sample of industrial and academic
projects. On this domain, adding SMT solvers to Atelier B provers reduces
significantly the number of sequents that need to be proved interactively.

Keywords: Formal methods, Event-B, SMT solving

1. Introduction

The Rodin platform [10] is an integrated design environment for the formal
modeling notation Event-B [2]. Rodin is based on the Eclipse framework [25] and
has an extensible architecture, where new features, or new versions of existing
features, can be integrated by means of plug-ins. It supports the construction
of formal models of systems as well as their refinement using the notation of
Event-B, based on first-order logic, typed set theory and integer arithmetic.
Event-B models should be consistent; for this purpose, Rodin generates proof
obligations that need to be discharged (i.e., proved valid).

IThis work is partly supported by the project ANR-13-IS02-0001-01, the STIC Am-
Sud project MISMT, CAPES grant BEX 2347/13-0, CNPq grants 308008/2012-0 and
573964/2008-4 (National Institute of Science and Technology for Software Engineering—INES,
www.ines.org.br), and EU funded project ADVANCE (FP7-ICT-287563).

Email addresses: david@dimap.ufrn.br (David Déharbe), Pascal.Fontaine@inria.fr
(Pascal Fontaine), yoann.guyot@cetic.be (Yoann Guyot), laurent.voisin@systerel.fr
(Laurent Voisin)

Preprint submitted to Elsevier June 10, 2015

The proof obligations are represented internally as sequents, and a sequent
calculus forms the basis of the verification machinery. Proof rules are applied
to a sequent and produce zero, one or more new, usually simpler, sequents. A
proof rule producing no sequent is called a discharging rule. The goal of the
verification is to build a proof tree corresponding to the application of the proof
rules, where all the leaves are discharging rules. In practice, the proof rules
are generated by so-called reasoners. A reasoner is a plug-in that can either be
standalone or use existing verification technologies through third-party tools.
Most of the time, sequents are not amenable to finite domain encoding, and
engines such as model checkers are not appropriate reasoners.

The usability of the Rodin platform, and of formal methods in general,
greatly depends on several aspects of the verification activity:

Automation Ideally, the validity status of proof obligations is computed au-
tomatically by reasoners. If human interaction is required for discharging
valid proof obligations (using an interactive theorem prover), productivity
is negatively impacted.

Information Validation of proof obligations should not be sensitive to irrele-
vant modifications of the model. When modifying the model, large parts
of the proof can be preserved if the precise facts used to validate each
proof obligation are recorded. It is important that the reasoners are able
to provide such sets of relevant facts, since they can then be used to
automatically construct new proof rules to be stored and tried for after
model changes. Also, other sequents (valid for the same reason) may be
discharged by these rules without requiring another call to the reasoner.

In addition, when reasoners are able to generate counter-examples of failed
proof obligations, this information can be very valuable to the user as hints
to improve the model and the invariants.

Trust When a prover is used, either the tool itself or its results need to be cer-
tified; otherwise the confidence in the formal development is jeopardized.

In this paper, we address the application of a verification approach that may
potentially fulfill these three requirements: Satisfiability Modulo Theory (SMT)
solvers. SMT solvers can automatically handle large formulas of first-order logic
with respect to some background theories, or a combination thereof, such as dif-
ferent fragments of arithmetic (linear and non-linear, integer and real), arrays,
bit vectors, etc. They have been employed successfully to handle proof obliga-
tions with tens of thousands of symbols stemming from software and hardware
verification. This paper extends the work presented in [15], and provides details
of a translation of Event-B sequents to SMT input. The difficulty essentially lies
in the way sets are translated. We here propose two approaches to tackle this
challenge. Notice that these approaches could also be applied to other set-based
formalisms such as the B method [1], TLA+ [20, 19], VDM [16] and Z [27].

The SMT-LIB initiative provides a standard for the input language of SMT
solvers, and, in its last version [5], a command language defining a common

2

SMT formula

SMT solver
Quantifier-free SMT solver

Boolean Model

Conflict clause

Theory
reasoner SAT solver

Instantiation
module

Instance

Model

Model UNSAT (proof/core)

Figure 1: Schematic view of an SMT solver.

interface to interact with SMT solvers. We implemented a Rodin plug-in using
this interface. The plug-in also extracts from the SMT solvers some additional
information such as the relevant hypothesis. Some solvers (e.g. Z3 [12] and
veriT [9]) are able to generate a comprehensive proof for validated formulas,
which can be verified by a trusted proof checker [3]. In the longer term, besides
automation, and information, trust may be obtained using a centralized proof
manager. The plug-in is open-source, distributed under the same license as
Rodin, and its source code is available in the main Rodin repository. The
plug-in is easily installable by users through the update manager of the Rodin
platform.

Overview. We start in Section 2 by giving some insights on the techniques em-
ployed in SMT solvers. Section 3 presents the translation of Rodin sequents
to the SMT-LIB notation. Section 4 illustrates the approach through a simple
example. Section 5 presents experimental results, based on the verification ac-
tivities carried out for a variety of Event-B projects. We conclude by discussing
future work.

Throughout the paper, formulas are expressed using the Event-B syntax [21],
and sentences in SMT-LIB are typeset using a typewriter font.

2. Solving SMT formulas

In this section, we provide some insight about the internals of SMT solvers,
in order to give to the reader an idea of the kind of formulas that can successfully
be handled by SMT solvers. A very schematic view of an SMT solver is presented
in Figure 1. Basically it is a decision procedure for quantifier-free formulas in a
rich language coupled with an instantiation module that handles the quantifiers
in the formulas by grounding the problem. For quantified logic, SMT solvers

3

are of course not decision procedures anymore, but they work well in practice if
the necessary instances are easy to find and not too numerous.

We refer to [4] for more information about the techniques described in this
section and SMT solving in general. There are several SMT solvers support-
ing quantifiers; the plug-in described in this paper makes use of Alt-Ergo [8],
CVC3 [6], Z3 [12], and veriT [9]. This last solver is developed by two of the
authors of this paper.

2.1. Quantifier-free formulas

Historically, the first goal of SMT solvers was to provide efficient decision
procedures for expressive languages, beyond pure propositional logic. Those
solvers have always been based on a cooperation of a Boolean engine, nowadays
typically a SAT solver (see [7] for more information on SAT solver techniques
and tools), and a theory reasoner to check the satisfiability of a set of literals in
the considered language. The Boolean engine generates models for the Boolean
abstraction of the input formula, whereas the theory reasoner refutes the sets of
literals corresponding to these abstract models by conjunctively adding conflict
clauses to the propositional abstraction. This exchange runs until either the
Boolean abstraction is sufficiently refined for the Boolean reasoner to conclude
that the formula is unsatisfiable, or the theory reasoner concludes that the
abstract model indeed corresponds to a model of the formula.

The theory reasoners are themselves based on a combination of decision pro-
cedures for various fragments. In our context, the relevant decision procedures
are congruence closure — to handle uninterpreted predicates and functions —
decision procedure for arrays (typically reduced to some kind of congruence clo-
sure), and linear arithmetic. It is possible, using the Nelson-Oppen combination
method [22, 26], to build a decision procedure for the union of the languages.
The theory reasoner used in most SMT solvers is thus able to decide the sat-
isfiability of literals on a language containing a mix of uninterpreted symbols,
linear arithmetic symbols, and array operators.

For the theory reasoner and the SAT solver to cooperate successfully, some
further techniques are necessary. Among these techniques, if a set of literals
is found unsatisfiable, it is most valuable to generate small conflict clauses,
in order to refine the Boolean abstraction as strongly as possible. Models of
the propositional abstraction are checked for satisfiability while they are being
built, so that unsatisfiability can be detected early. Finally, theory propagation,
in which the theory reasoner provides hints for the SAT solver decisions, has
proved to be very worthwhile in practice.

2.2. Instantiation techniques

Within SMT solvers, solving formulas with quantifiers is done by reduction
to quantifier-free formulas, using instantiation. Indeed, formula ∀xϕ(x) stands
for a conjunction over all combinations of values for x. Any formula of the
form ∀xϕ(x)⇒ ϕ(t), for any terms t, can be added conjunctively to the input
without changing its truth value. To show that a formula is unsatisfiable, it

4

is thus sufficient to find the right instances of quantified formulas to add to
the input. In that context, even if the SMT solver abstracts ∀xϕ(x) to a
Boolean proposition, it is able to reason about the formulas with quantifiers.
The quantifier instantiation module is responsible for producing lemmas of the
form ∀xϕ(x) ⇒ ϕ(t). Automatically finding the right instances of quantified
formulas is a key issue for the verification of sequents (as well as proof obligations
produced in the context of a number of software verification tools). Generating
too many instances may overload the solver with useless information and exhaust
computing resources. Generating too few instances will result in an “unknown”,
and useless, verdict. Handling quantifiers within SMT solvers is still a very
active research subject, and the methods to handle quantifiers vary greatly from
one solver to another. We report here how veriT copes with quantified formulas.
Several instantiation techniques are applied in turn: trigger-based, sort-based
and superposition techniques.

The trigger-based and sort-based instantiation techniques are applied to top-
most quantifiers, that is, to quantifiers that are not themselves in the scope of
other quantifiers. Remember that, when checking the satisfiability of formulas,
existential quantifiers with positive polarity and universal quantifiers with neg-
ative polarity can be eliminated by Skolemization. This satisfiability preserving
transformation replaces suitable quantified variables by witnesses, introducing
new uninterpreted symbols (constants or functions). In veriT, Skolemization au-
tomatically occurs for top-most quantifiers, whereas Skolemizable quantifiers in
the scope of non-Skolemizable quantifiers are not eliminated. As a consequence,
only Skolem constants are introduced, and no Skolem functions. Instantiation
will remove top-most non-Skolemizable quantifiers, some quantifiers in the in-
stance may then become top-most Skolemizable quantifiers in the process, and
are in turn eliminated with the introduction of Skolem constants. This strategy
is effective in practice.

In a quantified formula Qxϕ(x), a trigger is a set of terms T = {t1, · · · tn}
such that the free variables in T are the quantified variables x and each ti is a
sub-term of the matrix ϕ(x) of the quantified formula. Trigger-based instanti-
ation consists in finding, in the formula, sets of ground terms T ′ that match T ,
i.e., such that there is a substitution σ on x, where the homomorphic extension
of σ over T yields T ′. Each such substitution defines an instantiation of the
original quantified formula. Some verification systems allow the user to specify
instantiation triggers. This is not the case in Rodin, and veriT applies heuristics
to annotate quantified formulas with triggers.

If the trigger-based approach does not yield any new instance, veriT falls
back to sort-based instantiation. All ground terms in the formula are collected,
and each quantified formula is instantiated with every term that has the same
type as the quantified variable.

Finally, veriT also features a module to communicate with a superposition-
based first-order logic automated theorem prover, namely the E prover [24]. It
is built upon automated deduction techniques such as rewriting, subsumption,
and superposition and is capable of identifying the unsatisfiability of a set of
quantified and non-quantified formulas. When such a set is found satisfiable,

5

lemmas are extracted from its output and communicated to the other reasoning
modules of veriT. The E prover, like many saturation-based first-order provers,
is complete for first-order logic with equality.

2.3. Unsatisfiable core extraction

Additionally to the satisfiability response, it is possible, in case of an unsat-
isfiable input, to ask for an unsatisfiable core. It may indeed be very valuable to
know which hypotheses are necessary to prove a goal in a verification condition.
For instance, the sequent (1) discussed in Section 4 and translated into the SMT
input in Figure 6 is valid independently of the assertion labeled grd1; the SMT
input associates labels to the hypotheses, guards, and goals, using the reserved
SMT-LIB annotation operator !. A solver implementing the SMT-LIB unsatis-
fiable core feature could thus return the list of hypotheses used to validate the
goals. In the case of the example in Figure 6, the guard is not necessary to prove
unsatisfiability, and would therefore not belong to a good unsatisfiable core.

Recording unsatisfiable cores for comparison with new proof obligations is
particularly useful in our context. Indeed, users of the Rodin platform will
want to modify their models and their invariants, resulting in a need of vali-
dating again proof obligations mostly but not fully similar to already validated
ones. If the changes do not impact the relevant hypotheses and goal of a proof
obligation, comparison with the (previous) unsatisfiable core will discharge the
proof obligation and the SMT solver will not need to be run again. Also a same
unsatisfiable core is likely to discharge similar proof obligations, for instance
generated for a similar transition, but differing for the guard.

The unsatisfiable core production for the veriT solver is related to the proof
production feature. The solver is indeed able to produce a proof, and it has
moreover a facility to prune the proof of unnecessary proof steps and hypotheses.
It suffices thus to check the pruned proof and collect all hypotheses in that proof
to obtain a super-set of the unsatisfiable core that is often minimal in practice.
Other approaches for unsatisfiable core extraction for SMT are presented and
discussed in [4].

3. Translating Event-B to SMT

Figure 2 gives a schematic view of the cooperation framework between Rodin
and the SMT solver. Within the Rodin platform, each proof obligation is rep-
resented as a sequent, i.e. a set of hypotheses and a conclusion. These sequents
are discharged using Event-B proof rules. Our strategy to prove an Event-B
sequent is to build an SMT formula, call an SMT solver on this formula, and,
on success, introduce a new suitable proof rule. This strategy is presented as a
tactic in the Rodin user interface. Since SMT solvers answer the satisfiability
question, it is necessary to take the negation of the sequent (to be validated) in
order to build a formula to be refuted by the SMT solver. If the SMT solver
does not implement unsatisfiable core generation, the proof rule will assert that
the full Event-B sequent is valid (and will only be useful for that specific se-
quent). Otherwise an unsatisfiable core — i.e., the set of facts necessary to

6

RODIN

Event B sequent

negation of
Event B sequent

SMT formula

SMT response:
∙ SAT
∙ UNSAT
 ◦ proof
 ◦ relevant
 hypotheses

Event B
proof rule

SMT solver

Figure 2: Schematic view of the interaction between Rodin and SMT solvers.

prove that the formula is unsatisfiable — is supplied to Rodin, which will ex-
tract a stronger Event-B proof rule containing only the necessary hypotheses.
This stronger proof rule will hopefully be applicable to other Event-B sequents.
If, however, the SMT solver is not successful, the application of the tactic has
failed and the proof tree remains unchanged.

The SMT-LIB standard proposes several “logics” that specify the interpreted
symbols that may be used in the formulas. Currently, however, none of these
logics fits exactly the language of the proof obligations generated by Rodin.
There exists a proposal for such a logic [18], but the existing SMT solvers
do not yet implement corresponding reasoning procedures. Our pragmatic ap-
proach is thus to identify subsets of the Event-B logics that may be handled by
the current tools, either directly or through some simple transformations. The
translation takes as input the Event-B proof obligations. The representation of
proof obligations is such that each identifier has been annotated with its type.
In the type system, integers and Booleans are predefined, and the user may
create new basic sets, or compose existing types with the powerset and Carte-
sian product constructors. Translating Boolean and arithmetic constructs is
mostly straightforward, since a direct syntactic translation may be undertaken
for some symbols: Boolean operators and constants, relational operators, and
most of arithmetic (division and exponentiation operators are currently trans-
lated as uninterpreted symbols). As an example of transformation of an Event-B
sequent to an SMT formula, consider the sequent with goal 0 < n+ 1 under the
hypothesis n ∈ N; the type environment is {n ◦◦ Z} and the generated SMT-LIB
formula is:

(set-logic AUFLIA)

(declare-fun n () Int)

(assert (>= n 0))

(assert (not (< 0 (+ n 1))))

7

(check-sat)

The main issue in the translation of proof obligations to SMT-LIB is the
representation of the set-theoretic constructs. We present successively two ap-
proaches. The simplest one, presented shortly for completeness, is based on
the representation of sets as characteristic predicates [13]. Since SMT solvers
handle first-order logic, this approach does not make it possible to reason about
sets of sets. The second approach removes this restriction. It uses the ppTrans
translator, already available in the Rodin platform; this translator removes most
set-theoretic constructs from proof obligations by systematically expanding their
definitions.

3.1. The λ-based approach

This approach implements and extends the principles proposed in [13] to
handle simple sets. Essentially, a set is identified with its characteristic function.
For instance the singleton {1} is identified with (λx ◦◦ Z | x = 1) and the empty
set is identified with the polymorphic λ-expression (λx ◦◦ X | FALSE), where
X is a type variable. The union of (two) sets is a polymorphic higher-order
function (λ(S1

◦◦ X→BOOL) 7→ (S2
◦◦ X→BOOL) | (λx ◦◦ X | S1(x) ∨ S2(x))),

etc.
SMT-LIB does not provide a facility for λ-expressions, and has limited sup-

port for polymorphism. This approach requires several extensions to SMT-LIB:
λ-expressions, a polymorphic sort system, and macro-definitions. Those ex-
tensions are actually implemented in the veriT parser. Consider the sequent
A ◦◦ P(Z) ` A ∪ {a} = A, the translation to this extended SMT-LIB language
produces:

(declare-fun A (Int) Bool)

(declare-fun a () Int)

(define-fun (par (X) (union ((S1 (X Bool)) (S2 (X Bool))) (X Bool)

(lambda ((x X)) (or (S1 x) (S2 x))))))

(define-fun enum ((x Int)) Bool (= x a))

(assert (not (= (union A enum) A)))

(check-sat)

where X denotes a sort variable. The function definitions union and enum are
inserted by the translator. The former is part of a corpus of definitions for most
of the set-theoretic constructs (see [13, 14] for details). The latter is created on-
the-fly by the translator to denote the set {a}. Both definitions are composed
of a list of sorted parameters, the sort of the result, and the body expressing
the value of the result. The macro processor implemented in veriT transforms
this goal to

(not (forall ((x Int)) (iff (or (A x) (= x a)) (A x))))

i.e., a first-order formula that may then be handled using usual SMT solving
techniques. It is also possible to use veriT only as a pre-processor to produce
plain SMT-LIB formulas that are amenable to verification using any SMT-LIB
compliant solver.

8

P ::= P ⇒ P | P ≡ P | P ∧ · · · ∧ P | P ∨ · · · ∨ P |
¬P | ∀L · P | ∃L · P |
A = A | A < A | A ≤ A |M ∈ S | B = B | I = I

L ::= I · · · I
I ::= Name
A ::= A−A | A div A | A mod A | A expA |

A+ · · ·+A | A× · · · ×A | −A | I | IntegerLiteral
B ::= true | I
M ::= M 7→M | I | integer | bool
S ::= I

Figure 3: Grammar of the language produced by ppTrans. The non-terminals are P (pred-
icates), L (list of identifiers), I (identifiers), A (arithmetic expressions), B (Boolean expres-
sions), M (maplet expressions), S (set expressions).

As already mentioned, the main drawback of this approach is that sets of
sets cannot be handled. It is thus restricted to simple sets and relations. Fur-
thermore its reliance on extensions of the SMT-LIB format creates a dependence
on veriT as a macro processor. The next approach lifts these restrictions.

3.2. The ppTrans approach

Our second approach uses the translator ppTrans provided by the Predi-
cate Prover available in Rodin [17]. This tool translates an Event-B formula to
an equivalent formula in a subset of the Event-B mathematical language. The
grammar of this subset is shown in Figure 3. Note that the sole set-theoretic
symbol is the membership predicate. In addition, the translator performs de-
composition of binary relations and purification, namely it separates arithmetic,
Boolean and set-theoretic terms. Finally ppTrans performs basic Boolean sim-
plifications on formulas. In the following, we provide details on those transfor-
mations, using the notation ϕ ϕ′ to express that the formula (or sub-term) ϕ
is rewritten to ϕ′. Not only does this approach make the plug-in independent of
veriT, but it is also more general with respect to the translation of relations and
functions. However, in the class of formulas suitable for the λ-based approach,
ppTrans would produce similar results.

Maplet-hiding variables. The rewriting system implemented in ppTrans can-
not directly transform identifiers that are of type Cartesian product. In a pre-
processing phase, such identifiers are thus decomposed, so that further rewriting
rules may be applied. This decomposition introduces fresh identifiers of scalar
type (members of some given set, integers or Booleans) that name the compo-
nents of the Cartesian product. Technically, this pre-processing is as follows.
We assume the existence of an attribute T , such that T (e) is the type of ex-
pression e. Also, let fv(e) denote the free identifiers occurring in expression e.
The decomposition of the Cartesian product identifiers is specified, assuming
an unlimited supply of fresh identifiers (e.g. x0, x1,. . .), using the following two

9

definitions ∇ and ∇T :

∇(i) =

{
∇T (T (i)) if i is a product identifier,
i otherwise.

∇T (T) =

{
∇T (T1) 7→ ∇T (T2) if ∃T1, T2 ·T = T1 × T2,
a fresh identifier xi otherwise.

For instance, assume x ◦◦ Z × (Z × Z); then ∇(x) = x0 7→ (x1 7→ x2) and
fv(∇(x)) = {x0, x1, x2} are fresh identifiers.

The pre-processing behaves as follows:

• Quantified sub-formulas ∀x · ϕ(x), such that x is a product identifier, are
rewritten to

∀fv(∇(x)) · ϕ[∇(x)/x],

where e[e′/x] denotes expression e where expression e′ has been substi-
tuted for all free occurrences of x.

Ex. ∀a·a = 1 7→ (2 7→ 3) ∀a0, a1, a2 · a0 7→ (a1 7→ a2) = 1 7→ (2 7→ 3).

• Let ψ denote the top-level formula and let x1 . . . xn be the free Cartesian
product identifiers of ψ. Then:

ψ ∀fv(∇(x1)) · · · fv(∇(xn))·
(x1 = ∇(x1) ∧ · · ·xn = ∇(xn))⇒ ψ[∇(x1)/x1] · · · [∇(xn)/xn].

Ex. ψ ≡ a = b ∧ a ∈ S with typing {a ◦◦ S, b ◦◦ S, S ◦◦ P(Z× Z)}:

ψ ∀x0, x1, x2, x3 ·
(a = x0 7→ x1 ∧ b = x2 7→ x3)⇒

(x0 7→ x1 = x2 7→ x3 ∧ x0 7→ x1 ∈ S)

Purification. The goal of this phase is to obtain pure terms, i.e. terms that
do not mix symbols of separate syntactic categories: arithmetic, predicate, set,
Boolean, and maplet symbols. This is done by introducing new variables. In
Event-B, heterogeneous terms result from the application of symbols with a
signature with different sorts (e.g. symbol ⊆ yields a predicate from two sets).
This phase also eliminates some syntactic sugar. Figure 4 depicts the different
syntactic categories, how the Event-B operators relate them, and the effect of
desugarization. There is an arrow from category X to category Y if a term from
X may have an argument in Y . For instance . ∈ labels the arrow from P to A
since the left argument of ∈ may be an arithmetic term, e.g. in x+ y ∈ S.

First, let us introduce informally the notation Q?P [e∗], where Q is ∀ or ∃,
P a predicate, and e an expression in P such that the syntactic category of e
is not the same as that of its parent (identifiers are considered to belong to all
syntactic categories). This denotes the possible introduction of the quantifier Q
on a fresh variable, so that heterogeneous sub-terms in e are purified, yielding
e∗, as illustrated by the following examples:

10

=, . ∈, <,≤
J 6=, . 6∈, >,≥K

{x·P | F}
{a, . . . , b}

{x·P | F}
{a, . . . , b}

J=, 6=, . 6∈K
. ∈

. ∈
J=, 6=, . 6∈K

{x·P | F}⋂
x·P | F⋃
x·P | F

7→

{a, . . . , b}
{x·P | F}

bool

A

S

MB

P

J=, 6=, 6∈,⊆, 6⊆,⊂, 6⊂,
∈

finite,partitionK

Jmin,max,
card, f()K

7→
7→

Figure 4: The different syntactic categories and the symbols relating them: A for arithmetic
expressions, P for predicates, S for set expressions, B for Boolean expressions and M for
maplet expressions. ppTrans removes all occurrences of the constructs delimited by double-
brackets.

1. ∃?(a 7→ (1 7→ 2))∗ ∈ S represents ∃x0, x1 ·x0 = 1 ∧ x1 = 2 ∧ a 7→ (x0 7→
x1) ∈ S as 1 and 2 are not in the same syntactic category as the maplet.

2. ∀?(a 7→ b)∗ ∈ S does not introduce a quantification and denotes a 7→ b ∈ S.

Appendix A presents the rewriting rules implemented in ppTrans. For read-
ability, they are grouped thematically and the presentation order is not the
same as the rewriting order. The symbols relating the syntactic categories
P (predicates) and S (sets) are reduced to membership (∈) and equality (=)
by application of the rules A.1–A.8 (see Appendix A.1). Moreover rules A.1
and A.2 are also applied when the arguments belong to other syntactic cate-
gories and are responsible for the elimination of all the occurrences of symbols
6= and 6∈. Applications of the equality symbol between syntactic categories S,
M and B are removed by rules A.9–A.18 (Appendix A.2). Due to the sym-
metry property of equality, ppTrans also applies a symmetric version of each
such rule. The symbols that embed arithmetic terms are taken care of with
the rules in Appendix A.3. Rules A.19–A.21 first perform purification, and are
followed by the application of rules A.22–A.29, responsible for the elimination
of the symbols. Appendix A.4 contains rules to rewrite applications of the set
membership symbol according to the rightmost argument. Rules A.30–A.39 ex-
pand the definitions for the different kinds of relation symbols. Rules A.40–A.61

11

handle miscellaneous other cases. Finally, Appendix A.5 presents the rules to
rewrite applications of the set membership symbol according to both arguments,
where the first argument is always a maplet. Again, through the application of
rules A.62 to A.77, several symbols may be eliminated from the proof obliga-
tions.

All the rules in Appendix A are either sound purification rules, or the equiv-
alence of the left and right side terms can easily be derived from the definitions
(see [1]) of the eliminated symbols. Purification rules (Rules A.17, A.19 – A.21,
A.44) eliminate heterogeneous terms and are only applied once. It is not dif-
ficult to order all other rules such that no eliminated symbol is introduced in
subsequent rules. The rewriting system is thus indeed terminating.

Output to SMT-LIB format. Once ppTrans has completed rewriting, the result-
ing proof obligation is ready to be output in SMT-LIB format. The translation
from ppTrans’ output to SMT-LIB follows specific rules for the translation of
the set membership operator. For instance assume the input has the following
typing environment and formulas:

Typing environment Formulas
a ◦◦ S
b ◦◦ T
c ◦◦ U
A ◦◦ P(S)
r ◦◦ P(S × T)
s ◦◦ P(S × T × U)

a ∈ A
a 7→ b ∈ r

a 7→ b 7→ c ∈ s

Firstly, for each basic set found in the proof obligation, the translation pro-
duces a sort declaration in SMT-LIB. However, as there is currently no logic in
the SMT-LIB with powerset and Cartesian product sort constructors, ppTrans
handles them by producing an additional sort declaration for each combination
of basic sets (either through powerset or Cartesian product). Translating the
typing environment thus produces a sort declaration for each basic set, and
combination thereof found in the input. In SMT-LIB, sorts have a name and
an arity, which is non-null for polymorphic sorts. The sorts produced have all
arity 0, and for the above example, the following is produced:

S (declare-sort S 0)

T (declare-sort T 0)

U (declare-sort U 0)

P(S) (declare-sort PS 0)

P(S × T) (declare-sort PST 0)

P(S × T × U) (declare-sort PSTU 0)

Secondly, for each constant, the translation produces a function declaration
of the appropriate sort:

12

a ◦◦ S (declare-fun a () S)

b ◦◦ T (declare-fun b () T)

c ◦◦ U (declare-fun c () U)

A ◦◦ P(S) (declare-fun A () PS)

r ◦◦ P(S × T) (declare-fun r () PST)

s ◦◦ P(S × T × U) (declare-fun s () PSTU)

Third, for each type occurring at the right-hand side of a membership predicate,
the translation produces fresh SMT function symbols:

(declare-fun (MS0 (S PS) Bool))

(declare-fun (MS1 (S T PST) Bool))

(declare-fun (MS2 (S T U PSTU)) Bool)

The Event-B atoms can then be translated as follows:

a ∈ A (MS0 a A)

a 7→ b ∈ r (MS1 a b r)

a 7→ b 7→ c ∈ s (MS2 a b c s)

For instance, A∪{a} = A would be translated to ∀x·(x ∈ A∨x = a)⇔x ∈ A,
that is, in SMT-LIB format:

(forall ((x S)) (= (or (MS0 x A) (= x a)) (MS0 x A)))

While the approach presented here covers the whole Event-B mathematical
language and does not require polymorphic types or specific extensions to the
SMT-LIB language, the semantics of some Event-B constructs is approximated
because some operators become uninterpreted in SMT-LIB (chiefly member-
ship but also some arithmetic operators such as division and exponentiation).
However, we can recover their interpretation by adding axioms to the SMT-LIB
benchmark, at the risk of decreasing the performance of the SMT solvers. Some
experimentation is thus needed to find a good balance between efficiency and
completeness.

Indeed, it appears experimentally that including some axioms of set theory
to constrain the possible interpretations of the membership predicate greatly
improves the number of proof obligations discharged. In particular, the axiom
of elementary set (singleton part) is necessary for many Rodin proof obligations.
The translator directly instantiates the axiom for all membership predicates.
Assuming MS is the membership predicate associated with sorts S and PS, the
translation introduces thus the following assertion:

(assert (forall ((x S))

(exists ((X PS)) (and (MS x X)

(forall ((y S)) (=> (MS y X) (= y x)))))))

This particular assertion eliminates non-standard interpretations where some
singleton sets do not exist. Without it, some formulas are satisfiable because of
spurious models and the SMT solvers are unable to refute them.

13

4. A small Event-B example

As a concrete example of translation, this section presents the model of a
simple job processing system consisting of a job queue and several active jobs.
We define a given set JOBS to represent the jobs. The state of the model has
two variables: queue (the jobs currently queued) and active (the jobs being
processed). This state is constrained by the following invariants:

inv1 : active ⊆ JOBS (typing)

inv2 : queue ⊆ JOBS (typing)

inv3 : active ∩ queue = ∅ (a job can not be both active and queued)

One of the events of the system describes that a job leaves the queue and
becomes active. It is specified as follows:

Event SCHEDULE =̂ (some queued job j becomes active)

any
j

where
grd1 : j ∈ queue (the job j is in the queue)

then
act1 : active := active ∪ {j} (the job becomes active)
act2 : queue := queue \ {j} (the job is removed from the queue)

end

To verify that the invariant labeled inv3 is preserved by the SCHEDULE
event, the following sequent must be proved valid:

inv1, inv2, inv3, grd1 ` (active ∪ {j})︸ ︷︷ ︸
active’

∩ (queue \ {j})︸ ︷︷ ︸
queue’

= ∅ .
(1)

The generated proof obligations thus aims to show that the following formula
is unsatisfiable:

active ⊆ JOBS ∧
queue ⊆ JOBS ∧
active ∩ queue = ∅ ∧
j ∈ queue ∧
¬((active ∪ {j}) ∩ (queue \ {j}) = ∅) .

This proof obligation does not contain sets of sets and both approaches apply.
Figure 5 presents the SMT-LIB input obtained when the approach described in
section 3.1 is applied. Line 2 contains the declaration of the sort corresponding
to the given set JOBS. Lines 3–5 contain the declarations of the uninterpreted
function symbols of the proof obligation, and are produced using the typing
environment. Note that the sets queue and active are represented by unary
predicate symbols. Next, the macros corresponding to the set operators ∅, ∈,

14

1 (set-logic QF_AUFLIA)

2 (declare-sort JOBS 0)

3 (declare-fun active (JOBS) Bool)

4 (declare-fun queue (JOBS) Bool)

5 (declare-fun j () JOBS)

6 (define-fun (par (X) (emptyset ((x X)) Bool false)))

7 (define-fun (par (X) (in ((x X) (s (X Bool))) Bool (s x))))

8 (define-fun (par (X) (inter ((s1 (X Bool)) (s2 (X Bool))) (X Bool)

9 (lambda ((x X)) (and (s1 x) (s2 x))))))

10 (define-fun (par (X) (setminus ((s1 (X Bool)) (s2 (X Bool))) (X Bool)

11 (lambda ((x X)) (and (s1 x) (not (s2 x)))))))

12 (define-fun (par (X) (union ((s1 (X Bool)) (s2 (X Bool))) (X Bool)

13 (lambda ((x X)) (or (s1 x) (s2 x))))))

14 (define-fun enum ((elem JOBS)) Bool (= elem j))

15 (define-fun enum0 ((elem0 JOBS)) Bool (= elem0 j))

16 (assert (= (inter active queue) emptyset))

17 (assert (in j queue))

18 (assert (not (= (inter (union active enum) (setminus queue enum0))

19 emptyset)))

20 (check-sat)

Figure 5: SMT-LIB input produced using the λ-based approach.

1 (set-logic AUFLIA)

2 (declare-sort JOBS 0)

3 (declare-sort PJ 0)

4 (declare-fun MS (JOBS PJ) Bool)

5 (declare-fun active () PJ)

6 (declare-fun j () JOBS)

7 (declare-fun queue () PJ)

8 (assert (! (forall ((x JOBS))

9 (not (and (MS x active) (MS x queue)))) :named inv3))

10 (assert (! (MS j queue) :named grd1))

11 (assert (! (not (forall ((x0 JOBS))

12 (not (and (or (MS x0 active) (= x0 j))

13 (MS x0 queue)

14 (not (= x0 j)))))) :named goal))

15 (check-sat)

Figure 6: SMT-LIB input produced using the ppTrans approach.

15

∩, \, and ∪ are defined in lines 6–13. Lines 14–15 are the definitions of a macro
that represents the singleton set {j} (it occurs twice in the formula). Lines
16–19 are the result of the translation of the proof obligation itself.

Figure 6 presents the SMT-LIB input resulting from the translation approach
described in section 3.2. Since the proof obligation includes sets of JOBS, a
corresponding sort PJ and membership predicate MS are declared in lines 3–4.
Then, the function symbols corresponding to the free identifiers of the sequent
are declared at lines 5–7. Finally, the hypotheses and the goal of the sequent
are translated to named assertions (lines 8–14).

The sequent described in this section is very simple and is easily verified
by both Atelier-B provers and SMT solvers. It is noteworthy that the plug-in
inspects sequents to decide which approach is applied. When the sequents con-
tains no sets or only simple sets (i.e., no sets of sets), the λ-based approach
is applied. Otherwise, the plug-in employs the ppTrans approach. The next
section reports experiments with a large number of proof obligations and estab-
lishes a better basis to compare the effectiveness of these different verification
techniques.

5. Experimental results

We evaluated experimentally the effectiveness of using SMT solvers as rea-
soners in the Rodin platform by means of the techniques presented in this paper.
This evaluation complements the experiments presented in [15] and reinforces
their conclusions. We established a library of 2,456 proof obligations stemming
from Event-B developments collected by the European FP7 project Deploy and
publicly available on the Deploy repository1. These developments originate
from examples from Abrial’s book [2], academic publications, tutorials, as well
as industrial case studies.

One main objective of introducing new reasoners in the Rodin platform is to
reduce the number of valid proof obligations that need to be discharged inter-
actively by humans. Consequently, the effectiveness of a reasoner is measured
by the number of proof obligations proved automatically by the reasoner.

Obviously, effectiveness should depend on the computing resources given to
the reasoners. In practice, the amount of memory is seldom a bottleneck, and
usually the solvers are limited by setting a timeout on their execution time. In
the context of the Rodin platform, the reasoners are executed by synchronous
calls, and the longer the time limit, the less responsive is the framework to
the user. We have experimented different timeouts and our experiments have
shown us that a timeout of one second seems a good trade-off: doubling the
timeout to two seconds increases by fewer than 0.1% the number of verified
proof obligations, while decreasing the responsiveness of the platform.

Table 1 compares different reasoners on our set of benchmarks. The second
column corresponds to Rodin internal normalization and simplification proce-

1http://deploy-eprints.ecs.soton.ac.uk

16

dures. It shows that more than half of the generated proof obligations necessi-
tate advanced theorem-proving capabilities to be discharged. The third column
is a special-purpose reasoner, namely Atelier-B provers. They were originally
developed for the B method and are also available in the Rodin platform. Al-
though they are extremely effective, the Atelier-B provers now suffer from legacy
issues. The last five columns are various SMT solvers applied to the proof obli-
gations generated by the plug-in. The SMT solvers were used with a timeout
of one second, on a computer equipped with an Intel Core i7-4770, cadenced
at 3.40 GHz, with 24 GB of RAM, and running Ubuntu Linux 12.04. They
show decent results, but they are not yet as effective reasoners as the Atelier-B
theorem provers.

N
u
m

b
er

o
f

p
ro

o
f

o
b
li
g
a
ti

o
n
s

R
o
d
in

A
te

li
er

-B

a
lt

-e
rg

o
-r

2
1
7

cv
c3

-2
0
1
1
-1

1
-2

1

v
er

iT
-d

ev
-r

2
8
6
3

v
er

iT
&

E
-p

ro
v
er

z3
-3

.2

2456 1169 2260 2017 2218 2051 2160 2094

Table 1: Number of proof obligations discharged by the reasoners.

Although this comparison is interesting to evaluate and compare the differ-
ent reasoners, it is not sufficient to evaluate the effectiveness of the approach
presented in this paper. Indeed, nothing prevents users to use several other
reasoners once one has failed to achieve its goal. In Table 2, we report how
many proof obligations remain unproved after applying the traditional reason-
ers (Atelier-B theorem provers and the Rodin reasoner) in combination with
each SMT solver, and with all SMT solvers.

N
u
m

b
er

o
f

p
ro

o
f

o
b
li
g
a
ti

o
n
s

le
ft

a
lt

-e
rg

o
-r

2
1
7

cv
c3

-2
0
1
1
-1

1
-2

1

v
er

iT
-d

ev
-r

2
8
6
3

v
er

iT
&

E
-p

ro
v
er

z3
-3

.2

A
ll

S
M

T
so

lv
er

s

196 114 61 94 103 92 31

Table 2: Number of proof obligations not discharged by special-purpose reasoners and by each
SMT solver.

Each of the SMT solvers seems a valuable complement to the special-purpose
provers. However, we would also like to know whether the reasoning capacity
of some of these solvers is somehow subsumed by another solver, or whether
each SMT solver could provide a significant contribution towards reducing the

17

number of proof obligations that need to be discharged by humans. Table 3
synthesizes a pairwise comparison of the SMT solvers on our universe of proof
obligations.

alt-ergo cvc3 veriT veriT+E z3

alt-ergo 2017 2001 1880 1967 1911
cvc3 2001 2218 1953 2088 2031
veriT 1880 1953 2051 1958 1878

veriT+E 1967 2088 1958 2160 2067
z3 1911 2031 1878 1972 2094

Table 3: Number of proof obligations verified by SMT solver A also discharged by solver B.

This comparison signals the results obtained when all available reasoners are
applied: only 31 proof obligations are unproved, down from 196 resulting from
the application of Atelier-B provers. It is also noteworthy that even though
each SMT solver is individually less effective than Atelier-B provers, applied
altogether, they prove all but 97 proof obligations. The important conclusion
of our experiments is that there is strong evidence that SMT solvers comple-
ment in an effective and practical way the Atelier B provers, yielding significant
improvements in the usability of the Rodin platform and its effectiveness to
support the development of Event-B models.

6. Conclusion

SMT solving is a formal verification technique successfully applied to various
domains including verification. SMT solvers do not have built-in support for set-
theoretic constructs found in Rodin sequents. We presented here a translation
approach to tackle this issue. We evaluated experimentally the efficiency of
SMT solvers against proof obligations resulting from the translation of Rodin
sequents. In our sample of industrial and academic projects, the use of SMT
solvers on top of Atelier B provers reduces significantly the number of unverified
sequents. This plug-in is available through the integrated software updater of
Rodin (instructions at http://wiki.event-b.org/index.php/SMT_Plug-in).

The results are very encouraging and motivate us to progress further by
implementing and evaluating new translation approaches, such as representing
functions using arrays in the line of [11]. Elaborating strategies to apply different
reasoners, based on some characteristics of the sequents is also a promising
line of work. Another feature of some SMT solvers is that they can provide
models when a formula is satisfiable. In consequence, it would be possible, with
additional engineering effort, to use such models to report counter-examples in
Rodin.

We believe that the approach presented in this paper could also be applied
successfully for other set-based formalisms such as: the B method, TLA+, VDM
and Z.

18

Cooperation of deduction tools is very error-prone, not only because it relies
on the correctness of many large and complex tools, but also because of the
translations. Certification of proofs in a centralized trusted proof manager would
be the answer to this problem. Preliminary works in this direction exist [23].

Acknowledgments: This paper is a revised and extended version of [15]. We
thank the anonymous reviewers of paper [15] and of this paper for their careful
read and their remarks.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[2] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, 2010.

[3] M. Armand, G. Faure, B. Grégoire, L. Théry, and B. Werner. A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In First
Int’l Conference on Certified Programs and Proofs, CPP 2011, volume 7086
of Lecture Notes in Computer Science, pages 135–150. Springer, 2011.

[4] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo
theories. In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, chapter 26, pages 825–885. IOS Press, Feb. 2009.

[5] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard Version 2.0,
2010.

[6] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, ed-
itors, Computer Aided Verification (CAV), volume 4590 of Lecture Notes
in Computer Science, pages 298–302. Springer-Verlag, July 2007. Berlin,
Germany.

[7] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Appli-
cations. IOS Press, 2009.

[8] F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, S. Lescuyer, and
A. Mebsout. The Alt-Ergo automated theorem prover, http://alt-ergo.
lri.fr.

[9] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT:
An Open, Trustable and Efficient SMT-Solver. In Proc. Conference on
Automated Deduction (CADE), volume 5663 of Lecture Notes in Computer
Science, pages 151–156. Springer, 2009.

19

[10] J. Coleman, C. Jones, I. Oliver, A. Romanovsky, and E. Troubitsyna.
RODIN (Rigorous open Development Environment for Complex Systems).
In Fifth European Dependable Computing Conference: EDCC-5 supplemen-
tary volume, pages 23–26, 2005.

[11] J.-F. Couchot, D. Déharbe, A. Giorgetti, and S. Ranise. Scalable Auto-
mated Proving and Debugging of Set-Based Specifications. Journal of the
Brazilian Computer Society, 9:17–36, 2003.

[12] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R.
Ramakrishnan and J. Rehof, editors, Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS), volume 4963 of Lecture Notes in
Computer Science, pages 337–340. Springer, 2008.

[13] D. Déharbe. Automatic Verification for a Class of Proof Obligations with
SMT-Solvers. In M. Frappier, G. Uwe, K. Sarfraz, R. Laleau, and S. Reeves,
editors, Proceedings 2nd Int’l Conf. Abstract State Machines, Alloy, B and
Z, ABZ 2010, volume 5977 of Lecture Notes in Computer Science, pages
217–230. Springer, 2010.

[14] D. Déharbe. Integration of SMT-solvers in B and Event-B development
environments. Science of Computer Programming, 78(3):310 – 326, 2013.

[15] D. Déharbe, P. Fontaine, Y. Guyot, and L. Voisin. SMT solvers for
Rodin. In J. Derrick, J. A. Fitzgerald, S. Gnesi, S. Khurshid, M. Leuschel,
S. Reeves, and E. Riccobene, editors, Proc 3rd Int. Conf. Abstract State
Machines, Alloy, B, VDM, and Z (ABZ 2012), volume 7316 of Lecture
Notes in Computer Science, pages 194–207. Springer, 2012.

[16] C. B. Jones. Systematic software development using VDM. Prentice Hall
International Series in Computer Science. Prentice Hall, 1991.

[17] M. Konrad and L. Voisin. Translation from Set-Theory to Predicate Cal-
culus. Technical report, ETH Zurich, 2011.

[18] D. Kröning, P. Rümmer, and G. Weissenbacher. A Proposal for a Theory
of Finite Sets, Lists, and Maps for the SMT-LIB Standard. In Informal
proceedings, 7th Int’l Workshop on Satisfiability Modulo Theories (SMT)
at CADE 22, 2009.

[19] L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, Boston, Mass., 2002.

[20] S. Merz. On the logic of TLA+. Computers and Informatics, 22:351–379,
2003.

[21] C. Métayer and L. Voisin. The Event-B mathematical language, 2009.
http://deploy-eprints.ecs.soton.ac.uk/11/4/kernel_lang.pdf.

20

[22] G. Nelson and D. C. Oppen. Simplifications by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, Oct. 1979.

[23] M. Schmalz. The logic of Event-B, 2011. Technical report 698, ETH Zürich,
Information Security.

[24] S. Schulz. E - A Brainiac Theorem Prover. AI Communications,
15(2/3):111–126, 2002.

[25] The Eclipse Foundation. Eclipse SDK, 2009.

[26] C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–
Oppen combination procedure. In F. Baader and K. U. Schulz, editors,
Frontiers of Combining Systems (FroCoS), Applied Logic, pages 103–120.
Kluwer Academic Publishers, Mar. 1996.

[27] J. Woodcock and J. Davies. Using Z: specification, refinement, and proof.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

21

Appendix A. Rewriting rules in ppTrans

Appendix A.1. Rules for sets and predicates

x 6= y ¬(x = y) (A.1)

x 6∈ s ¬(x ∈ s) (A.2)

s ⊆ t s ∈ P(t) (A.3)

s 6⊆ t ¬(s ∈ P(t)) (A.4)

s ⊂ t s ∈ P(t) ∧ ¬(t ∈ P(s)) (A.5)

s 6⊂ t ¬(s ∈ P(t)) ∨ t ∈ P(s) (A.6)

finite(s) ∀a·∃b, f ·f ∈ s� a..b (A.7)

partition(s, s1, s2, . . . sn) s = s1 ∪ s2 ∪ . . . ∪ sn∧
s1 ∩ s2 = ∅ ∧ · · · ∧ s1 ∩ sn = ∅∧

...
sn−1 ∩ sn = ∅

(A.8)

Appendix A.2. Elimination of equalities

The notation ∀XT ·P (X) stands for ∀fv(∇(e))·P (∇(e)), with T (X) = T .

s = t ∀XT ·X ∈ s⇔ X ∈ t (A.9)

x1 7→ x2 = y1 7→ y2 x1 = y1 ∧ x2 = y2 (A.10)

x = f(y) y 7→ x ∈ f (A.11)

bool(P) = bool(Q) P ⇔ Q (A.12)

bool(P) = TRUE P (A.13)

bool(P) = FALSE ¬P (A.14)

x = FALSE ¬(x = TRUE) (A.15)

x = bool(P) x = TRUE⇔ P (A.16)

el[bool(s)] = er ∀?el[bool(s)∗] = er (A.17)

e = e > (A.18)

Appendix A.3. Elimination of mixed arithmetic symbols

Purification

mop stands for either min, max, card or a function application, ≺ for either ≤
or < and � for either ≥ or >.

el[mop(s)] = er ∀?el[mop(s)∗] = er (A.19)

a[mop(s)] ≺ b ∀?a[mop(s)∗] ≺ b (A.20)

a ≺ b[mop(s)] ∀?a ≺ b[mop(s)∗] (A.21)

22

Elimination of mixed operators

n = card(s) ∃f ·f ∈ s�� 1..n (A.22)

n = min(s) n ∈ s ∧ n ≤ min(s) (A.23)

n = max(s) n ∈ s ∧max(s) ≤ n (A.24)

a � b b ≺ a (A.25)

max(s) ≺ a ∀x·x ∈ s⇒ x ≺ a (A.26)

min(s) ≺ a ∃x·x ∈ s ∧ x ≺ a (A.27)

a ≺ min(s) ∀x·x ∈ s⇒ a ≺ x (A.28)

a ≺ max(s) ∃x·x ∈ s ∧ a ≺ x (A.29)

Appendix A.4. Rules based on the right argument of set membership

Elimination of membership in relations

The notation func(f) specifies that f is a function, and abbreviates:
∀AU , BV , CV ·A 7→ B ∈ f ∧A 7→ C ∈ f ⇒ B = C, where T (f) = U × V .

e ∈ s↔↔ t e ∈ s←↔ t ∧ t ⊆ ran(e) (A.30)

e ∈ s←↔ t e ∈ s↔ t ∧ s ⊆ dom(e) (A.31)

e ∈ s↔→ t e ∈ s↔ t ∧ t ⊆ ran(e) (A.32)

e ∈ s�� t e ∈ s� t ∧ func(e−1) (A.33)

e ∈ s� t e ∈ s→ t ∧ t ⊆ ran(e) (A.34)

e ∈ s 7� t e ∈ s 7→ t ∧ t ⊆ ran(e) (A.35)

e ∈ s� t e ∈ s→ t ∧ func(e−1) (A.36)

e ∈ s 7� t e ∈ s 7→ t ∧ func(e−1) (A.37)

e ∈ s→ t e ∈ s 7→ t ∧ s ⊆ dom(e) (A.38)

e ∈ s 7→ t e ∈ s↔ t ∧ func(e) (A.39)

23

Other membership rewriting rules

The notation ∀XT ·P (X) stands for ∀fv(∇(e))·P (∇(e)), with T (X) = T .
Likewise, notation ∃XT ·P (X) stands for ∃fv(∇(e))·P (∇(e)), with T (X) = T .

e ∈ s > if T (e) = s (A.40)

e ∈ ∅ ⊥ (A.41)

e ∈ P(t) ∀XT ·X ∈ e⇒ X ∈ t if T (e) = P(T) (A.42)

e ∈ s↔ t ∀XT ·X ∈ e⇒ X ∈ s× t if T (e) = P(T) (A.43)

e ∈ f ∃?e∗ ∈ f if f is an identifier (A.44)

e ∈ N 0 ≤ e (A.45)

e ∈ N1 0 < e (A.46)

e ∈ {x·P | f} ∃x·P ∧ e = f (A.47)

e ∈
(⋂

x·P | f
)
 ∀x·P ⇒ e ∈ f (A.48)

e ∈
(⋃

x·P | f
)
 ∃x·P ∧ e ∈ f (A.49)

e ∈ union(s) ∃x·x ∈ s ∧ e ∈ x (A.50)

e ∈ inter(s) ∀x·x ∈ s⇒ e ∈ x (A.51)

e ∈ r [s] ∃XT ·X ∈ s ∧X 7→ e ∈ r if P(T) = T (dom(r)) (A.52)

e ∈ f(s) ∃XT ·s 7→ X ∈ f ∧ e ∈ X if T = P(T (e)) (A.53)

e ∈ ran(r) ∃XT ·X 7→ e ∈ r if P(T) = T (dom(r)) (A.54)

e ∈ dom(r) ∃XT ·e 7→ X ∈ r if P(T) = T (ran(r)) (A.55)

e ∈ {a1, . . . , an} e = a1 ∨ · · · ∨ e = an (A.56)

e ∈ P1 (s) e ∈ P(s) ∧ [∃XT ·X ∈ e] if P(T) = T (e) (A.57)

e ∈ a..b a ≤ e ∧ e ≤ b (A.58)

e ∈ s \ t e ∈ s ∧ ¬(e ∈ t) (A.59)

e ∈ s1 ∩ . . . ∩ sn e ∈ s1 ∧ . . . ∧ e ∈ sn (A.60)

e ∈ s1 ∪ . . . ∪ sn e ∈ s1 ∨ . . . ∨ e ∈ sn (A.61)

24

Appendix A.5. Rules based on both arguments of set membership

e 7→ f ∈ s× t e ∈ s ∧ f ∈ t (A.62)

e 7→ f ∈ r B− t e 7→ f ∈ r ∧ ¬(f ∈ t) (A.63)

e 7→ f ∈ sC− r e 7→ f ∈ r ∧ ¬(e ∈ s) (A.64)

e 7→ f ∈ r B t e 7→ f ∈ r ∧ f ∈ t (A.65)

e 7→ f ∈ sC r e 7→ f ∈ r ∧ e ∈ s (A.66)

e 7→ f ∈ id e = f (A.67)

e 7→ f ∈ r−1 f 7→ e ∈ r (A.68)

e 7→ f ∈ pred e = f + 1 (A.69)

e 7→ f ∈ succ f = e + 1 (A.70)

e 7→ f ∈ r1 C− · · ·C− rn e 7→ f ∈ rn∨
e 7→ f ∈ dom(rn)C− rn−1∨
e 7→ f ∈ dom(rn) ∪ dom(rn−1)C− rn−2∨
...
e 7→ f ∈ dom(rn) ∪ · · ·dom(r2)C− r1

(A.71)

e 7→ f ∈ r1; . . . ; rn ∃X1
T1
, . . . Xn−1

Tn−1
·e 7→ X1 ∈ r1 ∧ . . . ∧Xn−1 7→ f ∈ rn

if T (ran(ri)) = P(Ti), 1 ≤ i ≤ n

(A.72)

e 7→ f ∈ r1 ◦ . . . ◦ rn e 7→ f ∈ rn; . . . ; r1 (A.73)

(e 7→ f) 7→ g ∈ prj1 e = g (A.74)

(e 7→ f) 7→ g ∈ prj2 f = g (A.75)

e 7→ (f 7→ g) ∈ p⊗ q e 7→ f ∈ p ∧ e 7→ g ∈ q (A.76)

(e 7→ f) 7→ (g 7→ h) ∈ p ‖ q e 7→ g ∈ p ∧ f 7→ h ∈ q (A.77)

25

