
Haniel Barbosa

New techniques for instantiation and
proof production in SMT solving

PhD Thesis
September 2017

Thesis Supervisors: Pascal Fontaine, David Déharbe, and Stephan Merz

École doctorale IAEM Lorraine

Nouvelles techniques pour

l’instanciation et la production des

preuves dans SMT

THÈSE

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

Haniel Barbosa

Septembre 2017

Membres du jury

Rapporteurs:

Erika Ábrahám PR RWTH Aachen University
Philipp Rümmer Chercheur Uppsala University

Examinateurs:
David Déharbe MCF Federal University of Rio Grande do Norte (co-directeur)
Catherine Dubois PR ENSIIE
Pascal Fontaine MCF University of Lorraine, CNRS, Inria, LORIA (co-directeur)
João Marcos MCF Federal University of Rio Grande do Norte
Stephan Merz DR Inria University of Lorraine, CNRS, Inria, LORIA (directeur)
Andrew Reynolds Chercheur University of Iowa

Pós-graduação em Sistemas e Computação

Novas técnicas de instanciação e

produção de demonstrações para a

resolução SMT

Tese de Doutorado apresentada ao Programa de Pós-

Graduação em Sistemas e Computação do Depar-

tamento de Informática e Matemática Aplicada do

Centro de Ciências Exatas e da Terra da Universi-

dade Federal do Rio Grande do Norte como requi-

sito parcial para a obtenção do grau de Doutor em

Ciência e Computação.

Haniel Barbosa

Setembro de 2017

Membros da Banca

Relatores:

Erika Ábrahám RWTH Aachen University

Philipp Rümmer Uppsala University

Examinadores:

David Déharbe UFRN (co-orientador)

Catherine Dubois ENSIIE (presidente da banca)

Pascal Fontaine University of Lorraine, CNRS, Inria, LORIA (co-orientador)

João Marcos UFRN

Stephan Merz University of Lorraine, CNRS, Inria, LORIA (orientador)

Andrew Reynolds University of Iowa

Abstract

In many formal methods applications it is common to rely on SMT solvers to automatically
discharge conditions that need to be checked and provide certificates of their results. In this
thesis we aim both to improve their efficiency of and to increase their reliability.

Our first contribution is a uniform framework for reasoning with quantified formulas in SMT
solvers, in which generally various instantiation techniques are employed. We show that the ma-
jor instantiation techniques can be all cast in this unifying framework. Its basis is the problem
of E-ground (dis)unification, a variation of the classic rigid E -unification problem. We introduce
a decision procedure to solve this problem in practice: Congruence Closure with Free Variables
(CCFV). We measure the impact of optimizations and instantiation techniques based on CCFV
in the SMT solvers veriT and CVC4, showing that our implementations exhibit improvements
over state-of-the-art approaches in several benchmark libraries stemming from real world appli-
cations.

Our second contribution is a framework for processing formulas while producing detailed
proofs. The main components of our proof producing framework are a generic contextual re-
cursion algorithm and an extensible set of inference rules. With suitable data structures, proof
generation creates only a linear-time overhead, and proofs can be checked in linear time. We
also implemented the approach in veriT. This allowed us to dramatically simplify the code base
while increasing the number of problems for which detailed proofs can be produced.

Keywords: quantifier instantiation, proof production, proof automation, smt solving, formal
verification.

Acknowledgments

First and foremost, I thank my main supervisor Pascal Fontaine for his almost endless patience
and certainly endless support. This thesis was only possible because he believed in me far more
than I did myself. I also thank my other supervisors David Déharbe and Stephan Merz, who
helped me so much during these years.

I am grateful to the other members of my jury, Erika Ábrahám, Philipp Rümmer, Catherine
Dubois, João Marcos, and Andrew Reynolds, who accepted to dedicate their time to read and
evaluate this thesis. I also thank Laurent Vigneron, who provided helpful suggestions for my
work as it progressed.

During these years of conferences and work travels, I had many interesting technical discus-
sions with colleagues. I thank you all, specially Andrew Reynolds and Jasmin Blanchette, who
became my co-authors and helped me so much into putting my results out there in the world.

The years in Nancy were made pleasant by the friends I made here. I say thank you, specially
to Jordi Martori, Jonàs Martínez, Aybüke Özgün, Maike Massierer, Martin Riener, and Simon
Cruanes.

I thank Inria and the Université de Lorraine for financially supporting me throughout my
PhD.

E eu não posso deixar de agradecer a meus pais, que tanto sacrificaram para que eu pudesse ter
uma boa educação e aprendesse a perseguir meus objetivos. Da mesma forma, minha família em
geral e amigos do Brasil foram fundamentais para que eu mantivesse minha sanidade durante esses
anos, me acolhendo tão alegremente durante minhas visitas. E claro, eu agradeço especialmente
a Samantha, que ilumina minha vida com seu carinho e que me inspira com sua tenacidade.

v

To Samantha, for putting up with me.

vi

“I guess I’m not in the mood for it today,” Paul said.
“Mood?” Halleck’s voice betrayed his outrage even through the shield’s filtering. “What has mood
to do with it? You fight when the necessity arises — no matter the mood! Mood is a thing for

cattle or making love or playing the baliset. It’s not for fighting.”

Dune, by Frank Herbert

vii

CONTENTS

Contents

1 Introduction 1

2 Conventions and definitions 5
2.1 Syntax . 5
2.2 Semantics . 8
2.3 Satisfiability . 10

3 Satisfiability modulo theories solving 12
3.1 CDCL(T) framework . 13
3.2 Quantified formulas in CDCL(T) . 16

3.2.1 Trigger based instantiation . 18
3.2.2 Conflict based instantiation . 21
3.2.3 Model based instantiation . 24

3.3 Other frameworks . 25
3.4 Certificates . 26

Part I Instantiation

4 Congruence closure with free variables 30
4.1 E-ground (dis)unification . 31

4.1.1 Recasting instantiation techniques . 35
4.2 Calculus . 37

4.2.1 Strategy . 42
4.2.2 Correctness . 44
4.2.3 Instantiating with CCFV . 47

4.3 A non-backtracking CCFV . 48
4.3.1 Strategy . 51

5 Implementation 54
5.1 Indexing . 55
5.2 Finding solutions . 57

5.2.1 Breadth-first CCFV . 61
5.2.2 Applying instantiation techniques . 64

viii

CONTENTS

5.3 Experiments . 64

Part II Proof Production

6 Processing calculus 69
6.1 Inference system . 70
6.2 Soundness . 74
6.3 A proof of concept checker . 77

7 Proof-producing contextual recursion 79
7.1 The generic algorithm and its instantiations 79

7.1.1 ‘Let’ expansion . 80
7.1.2 Skolemization . 81
7.1.3 Theory simplification . 81
7.1.4 Combinations of transformations . 82
7.1.5 Scope and limitations . 83

7.2 Correctness . 84
7.3 Implementation . 87

8 Conclusions 91

Bibliography 94

ix

List of Figures

3.1 An abstract procedure for checking the satisfiability of quantifier-free formulas
based on the CDCL(T) framework. 14

3.2 An abstract procedure for checking satisfiability based on the CDCL(T) framework. 17

5.1 Backtracking CCFV algorithm . 58
5.2 Breadth-first CCFV algorithm . 62
5.3 Improvements in veriT and CVC4 . 66
5.4 Depth-first versus breadth-first CCFV . 67

x

List of Tables

4.1 The CCFV calculus in equational FOL. E is fixed from a problem E |= Lσ. . . . 41
4.2 Non-backtracking CCFV calculus. E is fixed from a problem E |= Lσ. 50

5.1 Instantiation based SMT solvers on SMT-LIB benchmarks 66

xi

Chapter 1

Introduction

In many formal methods applications, such as formal verification, program synthesis, automatic
testing, and program analysis, it is common to rely on logics to represent conditions that need to
be asserted. These conditions can often be reduced to the Satisfiability Modulo Theories (SMT)
problem (Chapter 2): given a first-order logic formula, does it have a model consistent with a
combination of background theories? SMT solvers have thus become popular backends for tools
automating formal verification, program synthesis and so on. They automatically discharge proof
obligations — conditions to be checked — and provide certificates of their results, i.e. models or
proofs. In this thesis we aim both to improve the efficiency of SMT solvers and to increase their
reliability.

SMT solvers (Chapter 3) have been primarily designed to solve quantifier-free problems, on
which they are highly efficient and capable of handling large formulas with interpreted symbols.
Pure quantified first-order logic is best handled with resolution and superposition based theorem
proving [BG94, NR01]. Although there are first attempts [dMB08c] to unify such techniques
with CDCL(T) [NOT06], the calculus that SMT solvers usually implement, the most common
approach is still instantiation: quantified formulas are reduced to ground ones and refuted with
the help of decision procedures for ground formulas. The main instantiation techniques are E -
matching based on triggers [DNS05, dMB07, Rüm12], finding conflicting instances [RTdM14]
and model based quantifier instantiation (MBQI) [GdM09, RTG+13]. Each of these techniques
contributes to the efficiency of state-of-the-art solvers, yet each one is typically implemented
independently.

We introduce the E-ground (dis)unification problem as the cornerstone of a unique framework
in which all these techniques can be cast (Chapter 4). This problem relates to the classic prob-
lem of rigid E -unification [DV98] and is also NP-complete. Solving E-ground (dis)unification
amounts to finding substitutions such that literals containing free variables hold in the context
of currently asserted ground literals. Since the instantiation domain of those variables can be
bound, a possible way of solving the problem is by first non-deterministically guessing a substi-
tution and checking if it is a solution. The Congruence Closure with Free Variables algorithm
(CCFV, for short) presented here is a practical decision procedure for this problem based on the

1

Chapter 1. Introduction

classic congruence closure algorithm [NO80, NO07]. It is goal-oriented: solutions are constructed
incrementally, taking into account the congruence closure of the terms defined by the equalities
in the context and the possible assignments to the variables. We then show how to build on
CCFV to implement trigger based, conflict based and model based instantiation (Chapter 5).
An experimental evaluation is presented, in which we measure the impact of optimizations and
instantiation techniques based on CCFV. We show that our implementations exhibit improve-
ments over state-of-the-art approaches. This work led to a joint publication with Pascal Fontaine
and Andrew Reynolds [BFR17].

Instantiation techniques for SMT have been extensively studied. Heuristic instantiation based
on E -matching of selected triggers was first introduced by Nelson [Nel80] and has been success-
fully implemented in several solvers. A highly efficient implementation of E -matching in the
context of SMT solvers was presented by de Moura and Bjørner [dMB07]; it relies on incremen-
tal matching algorithms, generation of machine code for optimizing performance, and elaborated
indexing techniques combining features common in indexes for saturation based theorem provers.
Rümmer uses triggers alongside a classic tableaux method [Rüm12]. Trigger based instantiation
unfortunately produces many irrelevant instances. To tackle this issue, a goal-oriented instan-
tiation technique producing only useful instances was introduced by Reynolds et al. [RTdM14].
CCFV shares resemblance with this algorithm, since its search is also based on the structure
of terms and the use of the model coming from the ground solver. The approach here is how-
ever more general, of which this previous technique is a specialisation. Ge and de Moura’s
model based quantifier instantiation (MBQI) [GdM09] provides a complete method for equa-
tional first-order logic and other fragments through successive derivation of conflicting instances
to refine a candidate model for the whole formula, including quantifiers. It allows the solver to
find finite models when they exist. Model checking is performed with a separate copy of the
ground SMT solver searching for a conflicting instance. Alternative methods for model con-
struction and checking were presented by Reynolds et al. [RTG+13]. Both these model based
approaches [GdM09, RTG+13] allow integration of theories beyond equality, while CCFV for
now only handles equality and uninterpreted functions. Backeman and Rümmer solve the related
problem of rigid E -unification through encoding into SAT, using an off-the-shelf SAT solver to
compute solutions [BR15b]. Our work is more in line with goal-oriented techniques as those by
Goubault [Gou93] and Tiwari et al. [TBR00]; congruence closure algorithms being very efficient
at checking solutions, we believe they can also be the core of efficient algorithms to discover
them. CCFV differs from those previous techniques notably, since it handles disequalities and
since the search for solutions is pruned based on the structure of a ground model and is thus
most suitable for an SMT context.

A very important aspect in automated reasoning is to provide machine checkable certificates
for produced results. External applications using automatic systems generally need not only the
answer to the satisfiability problem but also a justification. For example, when checking if a
theorem is valid by trying to show that its negation is unsatisfiable, producing a model in the

2

case a satisfiable formula provides a counter-example for the conjecture. Moreover, since these
systems can be really complex engineering softwares, often with hundreds of thousands of lines
of code, it is hard to ensure that implementations are free of errors. Therefore being able to
verify the produced results is of paramount importance for improving the reliability of any such
tool.

An increasing number of automatic theorem provers can generate certificates, or proofs, that
justify their results. These proofs can be checked by other programs and shared across reasoning
systems. Proof production is generally well understood for the core proving methods (e.g.,
superposition, tableaux, conflict-driven clause learning) and for many theories commonly used
in satisfiability modulo theories (SMT). However, most automatic provers also perform some
formula processing or preprocessing—such as clausification and rewriting with theory-specific
lemmas—and proof production for this aspect is less mature. For most provers, the code for
processing formulas is not particularly complicated, but it is lengthy and deals with a multitude
of cases, some of which are rarely executed. Although it is crucial for efficiency, this code tends
to be given much less attention than other aspects of provers. Developers are reluctant to invest
effort in producing detailed proofs for such processing, since this requires adapting a lot of code.
As a result, the granularity of inferences for formula processing is often coarse. Sometimes,
processing features are even disabled to avoid gaps in proofs, at a high cost in proof search
performance.

The second main contribution of this thesis is a framework to address these issues. This
work led to a joint publication with Jasmin Blanchette and Pascal Fontaine [BBF17]. Proofs
are expressed using an extensible set of inference rules (Chapter 6). The succedent of a rule
is an equality between the original term and the translated term. (It is convenient to consider
formulas as a special case of terms.) The rules have a fine granularity, making it possible to cleanly
separate theories or even different lemmas from the same theory. Clausification, theory-specific
simplifications, and expansion of ‘let’ expressions are instances of this framework. Skolemization
may seem problematic, but with the help of Hilbert’s choice operator, it can also be integrated
into the framework. Some provers provide very detailed proofs for parts of the solving, but we are
not aware of any publications about practical attempts to provide easily reconstructible proofs for
processing formulas containing quantifiers and ‘let’ expressions. At the heart of the framework
lies a generic contextual recursion algorithm that traverses the terms to translate (Chapter 7).
The context fixes some variables, maintains a substitution, and keeps track of polarities or other
data. The transformation-specific work, including the generation of proofs, is performed by
plugin functions that are given as parameters to the framework. The recursion algorithm, which
is critical for the performance and correctness of the generated proofs, needs to be implemented
only once. Another benefit of the modular architecture is that we can easily combine several
transformations in a single pass, without unduly complicating the code or compromising the level
of detail of the proof output.

The inference rules and the contextual recursion algorithm enjoy many desirable properties.

3

Chapter 1. Introduction

We show that the rules are sound and that the treatment of binders is correct even in the presence
of name clashes. Moreover, assuming suitable data structures, we show that proof generation
adds an overhead that is proportional to the time spent processing the terms. Checking proofs
represented as directed acyclic graphs (DAGs) can be performed with a time complexity that is
linear in their size.

We implemented the approach also in the SMT solver veriT. The solver is known for its
detailed proofs [BdODF09, BFT11, DFP11], which are reconstructed in the proof assistants
Coq [AFG+11] and Isabelle/HOL [BBF+16]. As a proof of concept, we implemented a proto-
type checker in Isabelle/HOL. By adopting the new framework, we were able to remove large
amounts of complicated code in the solver, while enabling detailed proofs for more transforma-
tions than before. The contextual recursion algorithm had to be implemented only once and is
more thoroughly tested than any of the monolithic transformations it subsumes. Our empiri-
cal evaluation reveals that veriT is as fast as before even though it now generates finer-grained
proofs.

4

Chapter 2

Conventions and definitions

We introduce here the logical framework and conventions used throughout this thesis. Our
setting is a many-sorted classical first-order logic with equality (see e.g. Fitting [Fit96] or Baader
and Nipkow [BN98] for general accounts), as defined by the SMT-LIB standard [BFT15]. We
introduce below the syntax and semantics we rely on in our work on satisfiability checking modulo
theories.

2.1 Syntax

Definition 2.1 (Many-sorted first-order language). Given disjoint countably infinite sets S of
sorts (or types), X of variables, F of function symbols, and a function assign : X ∪ F → S+,
a many-sorted first-order language L is a collection of these objects represented as a tuple

L = 〈S,X ,F , assign〉

The function assign assigns sorts to symbols. The sort of a variable x in X is a tuple of one
element from S. The sort of a function symbol f in F is a tuple of n+ 1 elements from S, with
n ∈ N being called the arity of f , which is referred to as an n-ary symbol. Nullary, i.e. 0-ary,
functions are called constants. •

Definition 2.2 (Terms). Given a language L and a sort τ ∈ S, the sets of τ -terms are the
least sets, according to the inclusion order, defined inductively as follows:

(i) a variable x of sort 〈τ〉 is a τ -term;

(ii) if f is an n-ary function symbol of sort 〈τ1, . . . , τn, τ〉 and t1, . . . , tn are τ1-, . . . , τn-
terms, respectively, then f(t1, . . . , tn) is a τ -term.

The set of all τ -terms is denoted as Tτ . Every τ -term is a term. The set of all terms is
T =

⋃
τ∈S Tτ . •

5

Chapter 2. Conventions and definitions

Variables of sort τ are also referred to as τ -variables. A τ -term f(t1, . . . , tn) is also referred to
as an application or f -application over the parameters t1, . . . , tn, with f being the top symbol of
the application. Whenever convenient and unambiguous, we drop the τ from our denomination.
A constant is a ground term. A term f(t1, . . . , tn) is ground if and only if t1, . . . , tn are all
ground — ground terms are those without variables. The subterm relation is defined recursively
as follows: a term is subterm of itself; if a term is an application, all subterms of its parameters
are also its subterms.

In order do build formulas, we assume that the language contains logical symbols: a Bool ∈ S
sort; a family (' : 〈τ, τ, Bool〉)τ∈S of equality symbols, the connectives ¬ (negation) and ∨
(disjunction), and the binder ∀ (universal quantification). We refer to equality over Bool as
equivalence. Nullary function symbols of sort Bool are called propositions.

Definition 2.3 (Formulas). Given a language L , the set of L -formulas is the least set defined
inductively as follows:

(i) if t1 and t2 are τ -terms, for some sort τ , then t1 ' t2 is a formula;

(ii) if p is an n-ary function symbol of sort 〈τ1, . . . , τn, Bool〉 and t1, . . . , tn are τ1-, . . . , τn-
terms, respectively, then p(t1, . . . , tn) is a formula;

(iii) if ϕ is a formula, ¬ϕ is a formula;

(iv) if ϕ1 and ϕ2 are formulas, then ϕ1 ∨ ϕ2 is a formula;

(v) if x is a variable and ϕ is a formula, then ∀x. ϕ is a formula. •

Formulas are therefore terms of type Bool. A formula ∀x. ϕ is called a quantified formula,
with ϕ being its body and x a bound variable. Formulas t1 ' t2 and p(t1, . . . , tn) are atomic
formulas, or atoms. A literal is either an atom or its negation. Given a sort τ , the set of all
τ -terms in a formula ϕ is Tτ (ϕ), and the set of all terms in a formula ϕ is T(ϕ) =

⋃
τ∈S Tτ (ϕ).

The following conventions are adopted in the rest of this thesis:

t1 6' t2
def
= ¬(t1 ' t2) [Disequality]

ϕ1 ∧ ϕ2
def
= ¬(¬ϕ1 ∨ ¬ϕ2) [Conjunction]

ϕ1 → ϕ2
def
= ¬ϕ1 ∨ ϕ2 [Implication]

∃x. ϕ def
= ¬∀x. ¬ϕ [Existential Quantification]

∀x1 . . . xn. ϕ
def
= ∀x1. (∀x2. . . . (∀xn. ϕ) . . .) [Multiple universal quantification]

Definition 2.4 (Free variables). Given an L -formula ϕ, its set of free variables FV(ϕ) is defined

6

2.1. Syntax

recursively as:

FV(x) = {x}

FV(f(t1, . . . , tn)) =
n⋃
i=1

FV(ti)

FV(t1 ' t2) = FV(t1) ∪ FV(t2)

FV(¬ϕ) = FV(ϕ)

FV(ϕ1 ∨ ϕ2) = FV(ϕ1) ∪ FV(ϕ2)

FV(∀x. ϕ) = FV(ϕ) \ {x} •

A formula ϕ is a sentence, closed formula, if and only if FV(ϕ) = ∅. A formula is quantifier-
free if and only if it does not contain quantifiers, ground if and only if it is a quantifier-free
sentence. The set of bound variables of a formula ϕ is denoted BV(ϕ), consisting of the least set
defined inductively as the union of the sets of bound variables occurring in subformulas of ϕ.

Definition 2.5 (Substitution). A substitution is a function σ : X → T, such that

σ = {x1 7→ t1, . . . , xn 7→ tn}, with xi 6= xj, for 1 ≤ i < j ≤ n, n ∈ N+,

maps each τ -variable xi into a τ -term ti and every other variable not in x1, . . . , xn to itself. The
domain of σ, written dom(σ), is defined as the set of variables {x1, . . . , xn} that σ is replacing
by terms that are not themselves, i.e. dom(σ) = {x | x ∈ X and σ(x) 6= x}, while the range of σ,
written ran(σ), is the set of substituted terms, i.e. ran(σ) = {σ(x) | x ∈ dom(σ)}. A substitution
σ is ground if and only if every term in ran(σ) is ground.

The application of a substitution is recursively defined over terms as follows:

xσ = σ(x)

f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)

(t1 ' t2)σ = t1σ ' t2σ

(¬ϕ)σ = ¬(ϕσ)

(ϕ1 ∨ ϕ2)σ = ϕ1σ ∨ ϕ2σ

(∀x. ϕ)σ = (∀z. (ϕ{x 7→ z}))σ,with z being a fresh variable of the appropriate sort,
i.e. z 6∈ dom(σ) ∪ ran(σ) ∪ FV(σ)

Composition of substitutions σ and ρ, denoted σ ◦ ρ, is defined as for functions (i.e., ρ is applied
first). When written in postfix notation, the composition is ρσ. The fixed-point of a substitution
σ is a sequence of applications σ? = σ . . . σ such that σ?σ = σ?. A substitution σ is acyclic if and
only if, for any variable x, x does not occur in xσ?. A formula ψ1 is an instance of a formula
ψ2 if and only if there is a substitution σ such that ψ1 = ψ2σ. The substitution σ is referred to
as an instantiation of ψ2. •

7

Chapter 2. Conventions and definitions

The application of a substitution is both respectful of shadowing, i.e. it does not substitute
bound variables, and capture-avoiding : it avoids, by introducing renamings when necessary, to
replace variables by terms whose free variables would be “captured” by a quantifier, i.e. become
bound by it.

Definition 2.6 (Subformulas and polarity). Given an L -formula ϕ, the sets of subformulas with
positive, negative, and both polarities, denote respectively by SF+(ϕ), SF−(ϕ), and SF±(ϕ), are
the least sets such that

(i) ϕ ∈ SF+(ϕ);

(ii) if ¬ψ ∈ SF+(ϕ) (resp. SF−(ϕ)); then ψ ∈ SF−(ϕ) (resp. SF+(ϕ));

(iii) if ψ1 ∨ ψ2 ∈ SF±(ϕ), then {ψ1, ψ2} ⊆ SF±(ϕ);

(iv) if ∀x.ψ ∈ SF±(ϕ), then ψ ∈ SF±(ϕ).

The set of subformulas SF(ϕ) is defined as SF(ϕ) = SF+(ϕ) ∪ SF−(ϕ). •

A subformula occurs positively, resp. negatively, in ϕ if and only if it is in SF+(ϕ), resp. in
SF−(ϕ).

Definition 2.7 (Skolem Normal Form). An L -formula ϕ is in Skolem form if and only if
no quantified subformula ∃x. ψ1 occurs positively and no quantified subformula ∀x. ψ2 occurs
negatively. In this case, ϕ is referred to as a Skolem formula. •

Definition 2.8 (Conjunctive Normal Form). An L -formula ϕ is in conjunctive normal form
(CNF) if it is a conjunction of disjunctions of literals. Therefore a formula in CNF has the
form

∧n
i=1Ci, in which each Ci has the form

∨m
j=1 lij, for literals lij and n,m ∈ N+. Each Ci is

denoted a clause. •

Formulas in CNF will conventionally be written as sets of clauses {C1, . . . , Cn}, and clauses as
sets of literals {li1, . . . , lim}, such that whether the set stands for a conjunction or a disjunction of
its elements is to be inferred from the context. Sets that stand for a conjunction, respectively for a
disjunction, of their elements are said to be conjunctive, respectively disjunctive. Conjunctive or
disjunctive sets may be written as conjunctions or disjunctions, respectively, whenever convenient
and unambiguous.

We use the notations ān and (ai)
n
i=1 to denote the tuple, or vector, (a1, . . . , an), in which

n ∈ N+. We write [n] for {1, . . . , n}.

2.2 Semantics

The machinery for the assessment of truth and falsehood for terms in a language L , and therefore
meaning to the language, is presented below.

8

2.2. Semantics

Definition 2.9 (Structure). An L -structure A is defined as a pair A = 〈D, I〉, in which D
is a frame, defined as a collection of non-empty domain sets Dτ , for each sort τ ∈ S, and I
is an interpretation function that maps n-ary function symbols f of sort 〈τ1, . . . , τn, τ〉 to total
functions

fI : Dτ1 × · · · × Dτn → Dτ

The elements of each domain Dτ are referred to as domain elements of sort τ . The domain of
the sort Bool is the set of truth values {>, ⊥}. We say that a structure is finite if and only if
all domain sets in its frame are finite. Respectively, a structure is infinite if any of its domain
sets are infinite. •

Definition 2.10 (Valuation and Interpretation). Given an L -structure A = 〈D, I〉, a valuation
for A is a function V : X → D, such that each τ -variable x ∈ X is mapped to an element in Dτ .

An L -interpretationM comprises a structure A and a valuation V, such thatM = 〈A, V〉.
We say that M is a finite interpretation if and only if A is a finite structure. Respectively, M
is an infinite interpretation if and only if A is an infinite structure. •

Consider valuations V and V ′ and a set of variables Z. V ′ agrees with V except for Z if and
only if, for every variable x 6∈ Z, V ′(x) = V(x). V ′ and V agree on Z if and only if V ′(y) = V(y),
for every variable y ∈ Z.

Definition 2.11 (Extending interpretations). Given two languages L and L ′, and an L -
interpretationM = 〈A, V〉, an L ′-interpretationM′ = 〈A′,V ′〉 extendsM if and only if

(i) L ′ ⊇ L ;

(ii) every domain set in A is a subset of the respective domain set in A′;

(iii) for every function symbol f interpreted in M, fI′ in M′ extends fI , i.e. fI′ coincides
with fI on the domain sets of A

An L ′-interpretationM′ extends a class of L -interpretations Ω if and only ifM′ extends each
interpretationM∈ Ω. •

LetM = 〈A,V〉 be an L -interpretation. The notationMx̄n 7→d̄n denotes an L -interpretation
with the same structure asM and whose valuation Vx̄n 7→d̄n agrees with V except for x1, . . . , xn,
besides mapping each τ -variable xi into the element di ∈ Dτ .

Definition 2.12 (Evaluation in an interpretation). Given an L -interpretationM = 〈A,V〉 and

9

Chapter 2. Conventions and definitions

an L -formula ψ, the evaluation of ψ inM, noted JψKM, is defined recursively as follows:

JxKM = V(x)

Jf(t1, . . . , tn)KM = fI(Jt1KM, . . . , JtnKM)

Jt1 ' t2KM = > if and only if Jt1KM = Jt2KM;

⊥ otherwise
J¬ϕKM = > if and only if JϕKM = ⊥;

⊥ otherwise
Jϕ1 ∨ ϕ2KM = > if and only if Jϕ1KM = > or Jϕ2KM = >;

⊥ otherwise
J∀x. ϕKM = > if and only if JϕKMx 7→d = >, for every d ∈ Dτ , x being a τ -term;

⊥ otherwise.

A formula ψ is true inM if and only if JψKM = > and false inM if and only if JψKM = ⊥. •

2.3 Satisfiability

Definition 2.13 (Satisfiability). Given an L -interpretationM and an L -formula ψ,M satis-
fies ψ, writtenM |= ψ, if and only if it makes it true, i.e. JψKM = >. A formula ϕ is satisfiable
if and only if there is an interpretation M such that M |= ϕ, in which case we say that M is
a model of ϕ; otherwise ϕ is unsatisfiable, written |= ¬ϕ. Given two L -formulas ϕ and ψ, ϕ
entails ψ, written ϕ |= ψ, if and only if every model of ϕ is also a model of ψ. An L -formula ϕ
is valid, written |= ϕ, if and only if it is true in every L -interpretationM. •

In this thesis we are mainly concerned with a specific kind of interpretation: as defined in
Baumgartner and Waldmann [BW13], an L -interpretation M is term-generated if and only
if every element in a domain set Dτ is the interpretation of some ground τ -term. These are
the type of interpretations we are going to build when automatically assessing satisfiability of
formulas. Due to the Herbrand theorem, we know that checking satisfiability of closed Skolem
formulas in many-sorted first-order logic with equality can be reduced to checking satisfiability of
ground instances. Therefore it suffices to look for term-generated models when trying to assess
satisfiability.

Next we define the more general problem that our work addresses: that of determining
satisfiability when considering theories.

Definition 2.14 (Theory). A theory T is a set of L -sentences closed under entailment: for
every L -formula ϕ, if T |= ϕ then ϕ ∈ T . •

To work with the above definition in terms of interpretations, we present the following def-
initions. Given an L -interpretation M, the theory of M, denoted Th(M), is the set of all
L -sentences satisfied byM. This notion is generalized to a class of L -interpretations Ω, such

10

2.3. Satisfiability

that the theory of Ω, denoted Th(Ω), is the set of all L -sentences simultaneously satisfied by
everyM∈ Ω.

Definition 2.15 (Satisfiability modulo theory). Consider a theory T = Th(Ω), in which Ω is a
class of L -interpretations, and a language L ′ such that L ′ ⊇ L . We say that an L ′-formula
ϕ is T -satisfiable if and only if there is an interpretationM′ which extends Ω and is a model for
ϕ. Similarly, given L ′-formulas ϕ and ψ, we say that ϕ T -entails ψ, written ϕ |=T ψ, if and
only if every L ′-model of ϕ extending Ω is also a model of ψ. •

In general not only one but a combination, i.e. a union, of theories is considered when
checking satisfiability. We follow Barrett et al. [BSST09] for establishing satisfiability modulo a
combination of theories defined through classes of interpretations. We assume that if the theories
were defined axiomatically, as in Definition 2.14, their combination could be made simply by the
union of their axioms (if the languages were disjoint, otherwise through a renaming of common
symbols that takes into account whether shared function symbols are meant to stand for the
same function).

Definition 2.16 (Satisfiability modulo a combination of theories). An L -interpretation M is
a L -reduct of an L ′-interpretationM′, with L ′ ⊇ L , if and only ifM andM′ have the same
frame and the interpretation function ofM coincides with that ofM′ on the symbols of L .

Consider theories T1 = Th(Ω1) and T2 = Th(Ω2), in which Ω1 is a class of L1-interpretations
and Ω2 a class of L2-interpretations, with L1 and L2 being disjoint. Assume that both Ω1 and Ω2

are closed under isomorphisms. The combination T1⊕T2 is defined by the class Ω1+2 of (L1∪L2)-
interpretations such that, for every interpretation in Ω1+2, its L1-reduct is an interpretation in
Ω1 and its L2-reduct is an interpretation in Ω2. This way, determining satisfiability modulo
T = T1 ⊕ T2 to an L ′-formula ϕ, with L ′ ⊇ (L1 ∪ L2), amounts, as before, to finding an
L ′-modelM for ϕ which extends Ω1+2. •

11

Chapter 3

Satisfiability modulo theories solving

We have formally defined the problem of satisfiability modulo background theories in many-
sorted first-order logic with equality. We now proceed to the main topic of this thesis: how to
automatically determine the satisfiability of a first-order formula while taking into account a
set of theories. This is commonly known as the SMT problem. Its relevance comes from the
considerable gain in expressivity achieved by combining first-order logic with theories. Reasoning
efficiently in such a setting is of utmost importance to a variety of formal methods applications
that can rely on logic to encode problems. This allows computer-aided reasoning to be applied
on e.g. formal verification, program synthesis, automatic testing, program analysis, and so on.

The focus on real-world problems imposes a restriction on the relevant solutions to a given
SMT problem. One generally is interested only in solutions which are extensions of the standard
models of the background theories. So in practice, when solving e.g. a satisfiability problem
modulo linear integer arithmetic, the only desired solutions are those that interpret the symbols
+, −, <, and so on, in the usual way over the integer domain. One benefit of fixing interpretations
for theories, rather than relying e.g. on axiomatizations, is to be able to use ad-hoc (decision)
procedures for these specific structures, instead of relying on general purpose methods. For
combinations of quantifier-free theories this often leads to highly efficient decision procedures.

The importance of the SMT problem led to the field of research commonly know as “SMT
solving” (see [Seb07] or [BSST09] for comprehensive overviews). It originated with the simpler
problem of Boolean satisfiability, i.e. determining if a propositional formula has a model. This
problem is commonly known as SAT, and is one of the first to be shown NP-complete. As
such it was an intractable problem for many years, until the so called SAT revolution in the
turn of the last century: modern SAT solvers, implementing the conflict-driven clause-learning
(CDCL) calculus, can efficiently solve very large problems coming from real world problems
containing hundreds of thousands of propositional variables and millions of clauses. SMT solving
developed initially in the 1970s and 1980s by pioneers such as Nelson and Oppen [NO79, NO80]
and Shostak [Sho84]. The focus has been generally on quantifier-free logics, which are often
decidable. Modern approaches started in the late 1990s, harnessing the power of SAT solvers to
build more scalable systems. These approaches can be classified in two broad classes. In the first,

12

3.1. CDCL(T) framework

an SMT problem is fully encoded into a SAT instance and fed into a SAT solver, without further
intervention. Theory reasoning is performed only in order to provide a better encoding into
SAT. In the second, the theory reasoning is performed by a combination of decision procedures
that are interleaved with a SAT solver. The SMT problem is abstracted as a SAT instance,
whose solution is only a candidate one for the original problem: a propositionally consistent
conjunction of literals, which is then checked for consistency modulo the respective theories.
The CDCL(T) framework [NOT06] is such an approach for SMT solving. It is the most common
one adopted for systems performing automatic SMT solving. Our focus is in this framework and,
more importantly, on how to reason efficiently with quantified formulas on it.

In classical logics, the dual problem of satisfiability is that of theorem proving: showing that
a formula is a theorem is equivalent to showing that its negation is unsatisfiable, while finding
a model for its negation provides a counter-example to the conjecture. The field of automatic
theorem proving (ATP) historically was focused on pure and equational first-order logic, where
the biggest challenge is how to efficiently handle quantified formulas. Theory reasoning in the
presence of quantifiers poses steep challenges, as it is often incomplete and hard to be performed
efficiently even in an heuristic manner. Nevertheless, numerous works have tried to extend ATP
systems with theory reasoning, to the point that the differences between SMT solvers and ATP
systems are becoming increasingly smaller.

3.1 CDCL(T) framework

As previously described, what is commonly known as an SMT solver is a system implementing
the CDCL(T) calculus, by Nieuwenhuis et al. [NOT06]. Examples of such systems are the widely
used CVC4 [BCD+11] and Z3 [dMB08b] solvers, as well as Yices [Dut14] and veriT [BdODF09].

CDCL(T) is an extension to the conflict-driven clause learning (CDCL) calculus that ac-
commodates theory reasoning. CDCL is a refinement of the classic DPLL [DLL62] procedure
that combines a backtracking search for a propositional model with a powerful conflict analysis
engine. The search is performed by interleaving “decisions”, i.e. heuristic assignments of literals,
with the application of unit propagation until a fixpoint. The explicit backtracking is performed
by means of a learned clause derived when a conflict is reached in the search.

Considering a theory T , which is generally a combination of theories T1, . . . , Tn, such as
the theory of equality and uninterpreted functions1 and linear arithmetic, CDCL(T) determines
the satisfiability of a first-order formula ϕ, in conjunctive normal form (CNF), modulo the
theory T . Here we assume that ϕ is quantifier-free. How to handle quantified formulas in
a CDCL(T) architecture is discussed in the next section. The reasoning modulo each theory
Ti is performed by a specific theory solver, which is generally a decision procedure for the Ti-

1This theory coincides with many-sorted first-order logic with equality. In an SMT context the term “uninter-
preted” refers to function symbols not interpreted by the background theories. Since in many-sorted equational
first-order logic only the connectives and the equality symbol have fixed interpretations, all other function symbols
are considered “uninterpreted”.

13

Chapter 3. Satisfiability modulo theories solving

satisfiability of a conjunction of literals in the language of Ti. Even though theory solvers cannot
be combined modularly in general — there are theories whose satisfiability problem is decidable in
isolation but not when combined with other theories — some restricted scenarios allow successful
combinations. The Nelson-Oppen framework [NO79] is a common choice for combining theory
solvers into a decision procedure for the overall combination. It does not impose too many
formal restrictions on the considered theories and can lead to efficient implementations. With
such a framework, from models obtained by each theory solver a model for the combination of
the theories can be built, if it exists. The procedure in Figure 3.1 summarises how the calculus
is applied.

function CheckSat(ϕ, T) is
ϕ← Process(ϕ) // Simplifications, CNF transformation
do
E ← CheckBoolean(abs(ϕ)) // SAT solver
if E = ∅ then
return Unsat

C ← CheckGround(E, T) // Theory solvers
ϕ← ϕ ∪ C

while C 6= ∅
return Sat

Figure 3.1: An abstract procedure for checking the satisfiability of quantifier-free formulas based
on the CDCL(T) framework.

The Process routine normalises the input formula into CNF and performs transformations
aiming to optimise the solving. Examples of such transformations are arithmetic simplifications
and applying symmetry breaking [DFMP11]. The result of Process must be equisatisfiable
to the input formula, i.e. if the original formula had a model extending the intended model of
T , so will the processed formula, and vice-versa. Generally, a SAT solver implementing CDCL
embodies CheckBoolean. Its input is the propositional abstraction of the formula, obtained
with the function abs. It maps every distinct atom into a distinct proposition. If the formula
is propositionally satisfiable, the SAT solver outputs a conjunction of propositions, commonly
known as an assignment, representing a valuation that makes abs(ϕ) true: the found assignment
entails the propositional abstraction of the input formula. The set of literals whose abstractions
appear in the assignment is represented by E. If E is empty, the formula is propositionally
unsatisfiable, therefore it is also T -unsatisfiable. Since by construction the satisfiability of E
entails the satisfiability of ϕ, every model of E is also a model for ϕ. From now on we will
ambiguously refer to E as a candidate model for the original formula, due to the entailment
relationship between them.

The CheckGround module is generally implemented as a combination of specialised solvers
for each theory in a Nelson-Oppen framework. Thus it amounts to a ground decision procedure
for checking the T -satisfiability of E. If E is T -unsatisfiable, a conflict clause is produced,
embodying the explanation for the unsatisfiability of E. This clause is then learned, i.e. it is

14

3.1. CDCL(T) framework

added to the original problem in order to prevent the SAT solver from deriving again this faulty
assignment. If no conflict clause is derived, then E is T -satisfiable, and so is the original formula.

Example 3.1. Let ϕ be the formula

ϕ = a ≤ b ∧ b ≤ a+ x ∧ x ' 0 ∧ [f(a) 6' f(b) ∨ (q(a) ∧ ¬q(b+ x))]

We evaluate the satisfiability of ϕ modulo the combination T of the quantifier-free theories of
equality and uninterpreted functions and linear real arithmetic. This combination is decidable.
The processing of ϕ yields the CNF

ϕ = a ≤ b ∧ b ≤ a+ x ∧ x ' 0 ∧ [f(a) 6' f(b) ∨ q(a)] ∧ [f(a) 6' f(b) ∨ ¬q(b+ x)]

whose propositional abstraction is

abs(ϕ) = pa≤b ∧ pb≤a+x ∧ px'0 ∧ (¬pf(a)'f(b) ∨ pq(a)) ∧ (¬pf(a)'f(b) ∨ ¬pq(b+x))

A satisfying assignment for abs(ϕ) produced by CheckBoolean may be

{pa≤b, pb≤a+x, px'0, ¬pf(a)'f(b)}

which then triggers CheckGround to determine the T -satisfiability of the conjunctive set of
literals E = {a ≤ b, b ≤ a + x, x ' 0, f(a) 6' f(b)}. Generally, this would be done jointly by a
congruence closure procedure [NO80, BTV03] for handling equality and uninterpreted symbols
together with a simplex algorithm [DdM06] for handling arithmetic, both combined in a Nelson-
Oppen framework. The arithmetic solver will determine that a and b are equal, and provide
the equality a ' b to the congruence closure algorithm. By congruence, f(a) ' f(b) is derived,
which is in conflict with the literal f(a) 6' f(b) from E. Therefore E is T -unsatisfiable and the
conflict clause

¬(a ≤ b) ∨ ¬(b ≤ a+ x) ∨ ¬(x ' 0) ∨ f(a) ' f(b)

is derived and added to ϕ. After another iteration of the loop, a candidate model for the new
formula is

E = {a ≤ b, b ≤ a+ x, x ' 0, q(a), ¬q(b+ x)}

which is also unsatisfiable in this combination of theories. By adding the conflict clause

¬(a ≤ b) ∨ ¬(b ≤ a+ x) ∨ ¬(x ' 0) ∨ ¬q(a) ∨ q(b+ x)

to the new formula the SAT solver will be unable to produce a satisfying assignment. Therefore
the procedure halts and answers Unsat, showing that the original formula ϕ is T -unsatisfiable.

The key element in the quantifier-free CDCL(T) architecture are the theory solvers. They
are generally ad hoc, with specialised (decision) procedures tailored to the theory in question.

15

Chapter 3. Satisfiability modulo theories solving

An important element in the use of these solvers is whether they are invoked offline or online2.
Invocations are done online when they occur at every decision point in the SAT solver search:
after a decision is made and the SAT solver propagates until saturation, the theory solver is
invoked to analyze the current assignment. An offline invocation occurs only when the SAT solver
has provided a model for the propositional abstraction of the formula, i.e. a full assignment. For
simplicity, in Figure 3.1 it is assumed that theory solvers are called offline. In practice, however,
they are generally employed online. This allows for propositional assignments to be discarded
as soon as they become T -unsatisfiable, thus avoiding the consideration of all full assignments
extending the refuted one.

Another point for theory solvers is that they generally enjoy some important features (as
described in [Seb07] and [BSST09]) to make the most of the CDCL(T) framework:

– Model generation: when the procedure witnesses the consistency of the set of literals in its
theory, it is capable of producing a model and communicating it to the other components
of the framework.

– Conflict set generation: when the procedure attests the inconsistency of the set of literals
in its theory, it produces a (possibly minimal) subset from the given set of literals which
explains its unsatisfiability.

– Incrementality and backtrackability : the theory solver is stateful between different calls
from the outer loop. When checking an assignment, only literals not previously asserted
are evaluated. This can lead to significant performance gains, considering that theory
solvers may be called numerous times while the SAT solver derives candidate models. This
is specially the case when an online approach is implemented, with calls occurring at each
partial propositional assignment.

– Propagation: the solver is capable of propagating useful information (such as asserting
literals previously undefined in the SAT solver assignment) from the current candidate
model. This often leads to significant reductions of the potential search space by deriving
useful constraints.

3.2 Quantified formulas in CDCL(T)

Reasoning with quantifiers modulo background theories is often costly and not decidable in
general. Historically, in the CDCL(T) framework mainly heuristic instantiation techniques have
been used to tackle this problem. They allow to quickly derive ground instances from quantifiers
and turn the reasoning back to the efficient ground solver. Here we describe the main instantiation
techniques applied in CDCL(T).

2These are sometimes also referred to as eager and lazy approaches.

16

3.2. Quantified formulas in CDCL(T)

function CheckSatQ(ϕ, T) is
ϕ← Process(ϕ) // Simplifications, CNF transformation
do
〈E, Q〉 ← CheckBoolean(absQ(ϕ)) // SAT solver
if E ∪Q = ∅ then
return Unsat

C ← CheckGround(E, T) // Theory solvers
if C 6= ∅ then
ϕ← ϕ ∪ C
continue
I ← Inst(E, Q, T) // Instantiation module
ϕ← ϕ ∪ I

while I 6= ∅
if models can be built for T then
return Sat

else
return Unknown

Figure 3.2: An abstract procedure for checking satisfiability based on the CDCL(T) framework.

The abstract procedure CheckSat in Figure 3.1 is extended in Figure 3.2 to accommodate
quantifiers. Process works as before, except that the formula is also put in Skolem form, with all
quantified subformulas being quantified clauses3. The propositional abstraction produced by the
function absQ coincides with abs for literals outside the scope of quantifiers but furthermore ab-
stracts quantified formulas as propositions. The candidate model produced by CheckBoolean

is separated into a set E of ground literals and Q of quantified formulas. E is from now on
referred to as the ground model. When E is T -satisfiable, the reasoning proceeds for evaluating
E ∪ Q as a whole, taking the quantifiers into account. Instances are derived by the function
Inst, which embodies a quantifier module. The satisfiability check is subsequently performed in
the processed formula augmented with the generated instances.

The set I is composed of instantiation lemmas

∀x̄n. ψ → ψσ

from the quantified formulas ∀x̄n. ψ in Q, in which ψσ is a ground instance. When Inst does
not lead to an overall refutational complete procedure, there is no guarantee that if the original
formula is unsatisfiable then ground T -unsatisfiability will be derived through instantiation.
Similarly, when no instances are generated, the overall procedure can only answer Sat if the
instantiation module is such that models can be produced when no more instances can be derived.
If these conditions are not met, CheckSatQ may loop indefinitely or answer Unknown. Below
we overview in detail the main general purpose techniques for implementing an instantiation
module.

3This is not a requirement for handling quantified formulas in CDCL(T), but we adopt it for simplicity, without
loss of generality.

17

Chapter 3. Satisfiability modulo theories solving

3.2.1 Trigger based instantiation

The most common instantiation technique in SMT solving is based on the following observa-
tion [Nel80]: while a quantified formula ∀x̄n. ψ is semantically equivalent to the infinite conjunc-
tion

∧
σ ψσ, in which σ ranges over all substitutions, only part of these instances are “relevant” to

prove that the overall formula is unsatisfiable. Moreover, considering as relevant instances those
containing terms appearing in the ground model is an effective trade off between completeness
and efficiency.

This set of relevant instances is approximated through a selection of terms occurring in the
quantified formula. Instantiations are derived by solving the E -matching of these selected terms
with terms occurring in the ground model. Solutions are substitutions that make two terms
equal modulo the equalities in E. The resulting instantiations yield ground formulas. These sets
of selected terms are called triggers.

Definition 3.1 (E -matching). Given a conjunctive set of equality literals E and terms u and t,
with t ground, the E -matching problem is that of finding substitutions σ such that E |= uσ ' t

holds.

Definition 3.2 (Triggers). A trigger T for a quantified formula ∀x̄n. ψ is a set of non-ground
terms u1, . . . , um ∈ T(ψ) such that {x̄n} ⊆ FV(u1) ∪ · · · ∪ FV(um).

Given a model E ∪Q, trigger based instantiation considers each quantified formula ∀x̄n. ψ in
Q independently. It proceeds by

1. selecting triggers T1, . . . , Tm from the terms in ψ

2. deriving the set of instantiation lemmas

I =

m⋃
i=1

{
∀x̄n. ψ → ψσ Ti = {u1, . . . , umi}, E |= u1σ ' t1, . . . , E |= umiσ ' tmi ,

in which t1, . . . , tmi are ground terms from E

}

3. adding the lemmas in I to the original problem

Instantiations are determined by computing substitutions for the variables in the selected
terms. These substitutions are the solutions for the simultaneous E -matching problem of the
selected terms and chosen ground terms occurring in E. Solutions are substitutions for which E
groundly entails that each selected term is equal, modulo the theory of equality, to the respective
ground term.

An abstract version of the algorithm to compute such substitutions, as presented by de Moura
and Bjørner [dMB07], is

ematch(x, t, S) = {σ ∪ {x 7→ t} | σ ∈ S, x 6∈ dom(σ)} ∪ {σ | σ ∈ S, E |= xσ ' t}

ematch(t′, t, S) =

{
S if E |= t′ ' t
∅ otherwise

ematch(f(s̄n), t, S) =
⋃

f(t̄n)∈T(E), E|=f(t̄n)'t

ematch(sn, tn, . . . , ematch(s1, t1, S) . . .)

18

3.2. Quantified formulas in CDCL(T)

in which x is a variable, t is a ground term, s is a term, and S is a set of substitutions. All
instantiations for a quantified formula with a trigger T = {u1, . . . , un} can be obtained with the
set of substitutions

S =
⋃

t1, ..., tn∈T(E)

ematch(un, tn, . . . , ematch(u1, t1, {σ}) . . .)

in which σ is a substitution mapping the variables in T to themselves.
Even though E -matching is an NP-complete problem, it can be performed efficiently in the

context of a CDCL(T) solver (see e.g. [dMB07] describing an implementation in the Z3 solver).
Implementations exploit the E -graph that is generally maintained by the ground solver. This
data structure is a concretization of the separation of the set of terms T(E) into congruence
classes according to the congruence relation '.

Example 3.2. Let E and Q be conjunctive sets, with E = {f(a) ' g(b), h(a) ' b, f(a) ' f(c)}
and Q = {∀x. f(x) 6' g(h(x))}. Possible triggers for ∀x. f(x) 6' g(h(x)) are T1 = {f(x)},
T2 = {h(x)}, T3 = {f(x), g(h(x))} and so on. If only T1 is chosen, the possible instantiations
for the quantified formula are derived by E -matching f(x) with terms containing f -applications
in their congruence classes. The only such congruence class over T(E) is {f(a), f(c), g(b)}.
Therefore the resulting substitutions are obtained from ematch(f(x), g(b), {{x 7→ x}}). Since
g(b) is congruent to the terms f(a) and f(c), this function is reduced to

ematch(x, a, {{x 7→ x}}) ∪ ematch(x, c, {{x 7→ x}})

which yields the set of substitutions with σ1 = {x 7→ a} and σ2 = {x 7→ c}. These substitutions
lead to the instantiation lemmas

∀x. f(x) 6' g(h(x))→ f(a) 6' g(h(a))

and
∀x. f(x) 6' g(h(x))→ f(c) 6' g(h(c))

which are then added to the original problem.

Trigger selection The effectiveness of trigger based instantiation is highly dependent on which
terms are selected to compose triggers. Therefore good selection strategies are paramount for
efficient CDCL(T) solvers. Alternatively, users may annotate quantified formulas with triggers,
thus capturing their intuition of which instantiations are more important to solve a problem.
The selection strategy also influences the completeness of the solver. Dross et al. [DCKP13]
and Bansal et al. [BRK+15] have presented dedicated trigger selection strategies to obtain com-
pleteness for specific fragments of first-order logic, while Rümmer [Rüm12] presents a calculus,
not in CDCL(T) framework, whose completeness results are independent of the trigger selection
strategy.

19

Chapter 3. Satisfiability modulo theories solving

There is no standard trigger selection strategy, but recent work by Leino and Pit-Claudel
[LP16] combines typical approaches and introduces some sophisticated criteria. A possible strat-
egy to be extracted from their work is as follows:

1. Traverse a quantified formula and annotate terms as trigger heads or trigger killers. Trigger
heads are terms with at least one of the quantified variables as subterm, and that do not in-
clude trigger killers. Trigger killers are terms not permitted to appear in triggers, typically
applications of interpreted symbols, e.g. arithmetic operations or logical connectives.

2. Candidate triggers are built by combining all possible trigger heads while ensuring two prop-
erties: adequacy and parsimony. A candidate is adequate if it contains all the quantified
variables and parsimonious if removing any term from the candidate makes it inadequate.
E.g. a quantified formula ∀x. p1(x) ∨ · · · ∨ pn(x) has the trigger heads {p1(x), . . . , pn(x)}
and 2n adequate candidates, but only n which are parsimonious: the singletons {p1(x)},
. . . , {pn(x)}.

3. The remaining candidates are ordered by specificity. Let T1, T2 be candidate triggers. T1

is less specific than T2 if and only if all matchings of T2 are also matchings for T1. This
is the case when for each trigger head t in T1 there is a trigger head t′ in T2 such that t
matches t′, i.e. there is a substitution σ such that tσ = t′.

4. Finally, the possible triggers for the quantified formula are the minimal candidates.

Example 3.3. Consider again the quantified formula ∀x. f(x) 6' g(h(x)). The possible triggers
derived with the above strategy would be only T1 = {f(x)} and T2 = {h(x)}, since any trigger
with g(h(x)) will be less specific than T2 and any non-singleton trigger will not be parsimonious.

Avoiding matching loops A matching loop occurs when quantifiers generate instances that
only serve to re-instantiate them, thus locking the solver in an infinite chain of instantiations.

Example 3.4 ([Rey16]). Consider the formula ∀x. f(f(x)) ' f(x) with the trigger T = {f(x)}.
An instantiation {x 7→ t} will add the term f(f(t)) to the problem, which will subsequently
lead to a possible new instantiation {x 7→ f(t)} for this trigger, which would generate a term
f(f(f(t))) and so on.

Up to now solutions have been proposed only to the cases in which loops depend on a single
quantifier, i.e. when the instances of a quantifier directly trigger new instantiations of the same
formula. Leino and Pit-Claudel [LP16] propose selection strategies to avoid matching loops. In
the above example the trigger {f(x)} would be discarded because it is a subterm of a term
in the same formula, namely f(f(x)). The only possible trigger for this formula would be
{f(f(x))}, which would not lead to looping instantiations on this quantifier. Other works rely
not on trigger selection strategies, but on the handling of produced instances. Ge et al. [GBT07]

20

3.2. Quantified formulas in CDCL(T)

consider instantiations in a breadth-first manner by associating levels to instantiated terms, while
de Moura and Bjørner [dMB07] and Barbosa [Bar16] discard instances based on their activity,
measured according to the participation of instances in conflicts in the SAT solver. All these
strategies have shortcomings, given the trade-off between avoiding matching loops and missing
relevant instances.

Avoiding explosion The main issue of trigger based instantiation is the large number of
produced instances, which often allow only a few rounds of instantiation before the ground
solver is unable to continue the solving.

Example 3.5. Consider the quantified formula ∀xyz.f(x) ' f(z)→ g(y) ' h(z) and the trigger
T = {f(x), g(y), h(z)}. If E contains 100 applications of each function symbol f , g, and h, a
million instances will be generated from this trigger for this formula.

Reynolds [Rey16] applies a strategy in the CVC4 solver that limits the number of possible
instantiations for each trigger, with no more than one term per congruence class being used
to generate instances. While their trigger based instantiation is very effective, the problem of
generating too many instances remains. Leino et al. [LMO05] and later Moskal and Łopusza-
ński [MŁ06] have used a two-tier approach: the instances, together with the current ground
model E, are fed into a secondary SMT solver; after unsatisfiability is (hopefully) attained for
this combination, only the instances that were relevant for deriving the conflict are added to the
original problem. While this technique is promising, it has not been implemented in state-of-
the-art CDCL(T) solvers. The approaches for discarding instances in [dMB07] and [Bar16] also
aim to minimise the number of instances to consider, but their effectiveness is not yet clear.

3.2.2 Conflict based instantiation

The lack of a goal in trigger based instantiation (such as e.g. refuting the candidate model) leads
to the production of many instances irrelevant for the solving. Furthermore, unlike other non-
goal-oriented techniques, such as the techniques based on the superposition calculus, there are
no straightforward redundancy criteria for the elimination of derived instances in the CDCL(T)
framework. Therefore useless instances are generally kept, potentially hindering the solver’s
performance. Relying on heuristic instantiation also leads to the so called butterfly effect : small
changes on the structure of the input problem have unpredictable effects on the solver’s outcome.
This is particularly harmful since CDCL(T) solvers are commonly used as backends in a myriad
of tools, e.g. in formal verification, which cannot afford to suffer from such instability. These
issues started to be addressed by Reynolds et al. [RTdM14] when introducing conflict based
instantiation in the context of a CDCL(T) solver. It is a goal-oriented instantiation technique:
only instances which are conflicting with the current ground model are derived. For efficiency
reasons, quantified formulas are evaluated independently in the search for conflicting instances.

21

Chapter 3. Satisfiability modulo theories solving

Given a candidate model E ∪Q, an instance ψ is said to be conflicting with E if E∧ψ |=T ⊥,
or, alternatively, if E |=T ¬ψ. Therefore, given some quantified formula ∀x̄n. ψ in Q, finding
conflicting instances amounts to searching for a ground substitution σ such that E |=T ¬ψσ.
Adding ∀x̄n. ψ → ψσ to the original problem will prevent the derivation of that same candidate
model. This way all instances produced by conflict based instantiation will a priori be relevant
for the solving, witnessing a faulty assignment produced by the SAT solver and preventing its
repetition, the same way that learned conflict clauses at the ground and propositional level do.

Example 3.6. Consider again the conjunctive sets E = {f(a) ' g(b), h(a) ' b, f(a) ' f(c)}
and Q = {∀x. f(x) 6' g(h(x))} from Example 4.2. While the trigger {f(x)} led to the two
instantiation lemmas

∀x. f(x) 6' g(h(x))→ f(a) 6' g(h(a))

and
∀x. f(x) 6' g(h(x))→ f(c) 6' g(h(c))

conflict based instantiation would derive only the first lemma, since E |= f(a) ' g(h(a)) makes
the first instance conflicting with E. However, E 6|= f(c) ' g(h(c)), therefore the second instance
is not conflicting. Note that the second lemma introduces a literal with the new terms h(c) and
g(h(c)), which did not previously appear in E, and whose relevance for the solving is a priori
unknown.

Finding conflicting instances Intuitively, the problem of finding conflicting instances for a
given quantified formula ∀x̄n. ψ is much harder than instantiation based on E -matching and
triggers. One must check that there is a substitution which makes the negation of ψ to be
entailed by E, which can be arbitrarily complicated depending on the literals of ψ and the size of
E. Reynolds et al. provide an algorithm to successively turn ψ into a set of matching constraints
from which they eventually extract substitutions leading to conflicting instances. It has been
implemented in CVC4 and is used as a preliminary phase for trigger based instantiation: the
latter is invoked only when the former fails to produce conflicting instances. This led to a
significant increase in the number of problems solved by the solver, while generally notably
reducing the number of necessary instances to do so.

Example 3.7 ([Rey16]). Let E = {a 6' c, f(b) ' b, g(b) ' a, f(a) ' a, h(f(a)) ' d, h(b) ' c}
and consider a quantified formula ∀x. f(g(x)) ' h(f(x)). The instance f(g(b)) ' h(f(b)) is
conflicting with E, since E |= f(g(b)) 6' h(f(b)). The search for this conflicting instance is
performed by deriving constraints based on the fact that E |= f(g(b)) ' a ∧ h(f(b)) ' c and
E |= a 6' c. Therefore if an assignment is provided for the variable x such that the constraints
f(g(x)) ' f(g(b)) and h(f(x)) ' h(f(b)) hold then this assignment embodies a substitution
leading to a conflicting instance of the quantified formula.

22

3.2. Quantified formulas in CDCL(T)

Propagating equalities A very interesting feature of the search for conflicting instances is
that as a by-product it might propagate equalities over the terms of E, a desirable feature
common in theory solvers in a CDCL(T) framework. Sometimes when conflicting instances
are not found, the constraints produced during the search are equalities among terms in E.
Generating instantiation lemmas based on these constraints will not refute the model, but will
potentially reduce the search space. CVC4 also benefits from this technique in their instantiation
module.

Example 3.8 ([Rey16]). If in Example 3.7 the literal a 6' c were not present in E then the
given quantified formula would not have a conflicting instance. The instance f(g(b)) ' h(f(b)),
however, together with E would entail that a ' c. Therefore deriving this instance propagates
an equality for the terms in E.

Limitations The procedure presented by Reynolds et al. is efficient and greatly improves the
instantiation module in CVC4, but no formal guarantees are given about the exact complexity
of the problem it addresses or that conflicting instances for a given quantified formula will be
found when they exist. A more general limitation for the search itself for conflicting instances
is that accounting for theories beyond equality is particularly complicated. Remember that the
search requires finding a substitution σ such that, for some theory T , E |=T ¬ψσ holds. It
is thus necessary to efficiently check entailment modulo T . In a regular CDCL(T) solver this
can be done very efficiently for the theory of equality by using the data structures in place for
performing the congruence closure decision procedure, but the same does not apply to other
theories.

Example 3.9 ([RTdM14]). Consider T to be a combination of the theories of equality and
linear integer arithmetic. Let E = {f(a) ' b, g(a) ≥ b+ 1} and consider the quantified formula
∀x. f(x) ' g(x). The substitution σ = {x 7→ a} leads to the conflicting instance f(a) ' g(a).
However, finding it requires efficiently checking that E |=T f(a) 6' g(a), which is not derivable
by equality reasoning only.

Another limitation is that quantified formulas are each considered independently. This means
that there are instances from Q which in combination are conflicting with E but that cannot be
found with this technique.

Example 3.10. Let E = {p(a)} and Q = {∀x. q(x), ∀yz. ¬q(y) ∨ ¬p(z)}. There are no sub-
stitutions σ, ρ such that E |= ¬q(x)σ or E |= q(y)ρ ∧ p(z)ρ, even though E ∪ Q is clearly
inconsistent.

23

Chapter 3. Satisfiability modulo theories solving

3.2.3 Model based instantiation

Model based quantifier instantiation (MBQI) is a complete instantiation technique for CDCL(T)
solvers introduced by Ge and de Moura [GdM09]. It attempts to build a model for E ∪ Q by
systematically creating candidate interpretations M which satisfy E and evaluating whether
they also satisfy Q. The former is guaranteed by construction. The latter is checked, for each
quantified formula ∀x̄n. ψ ∈ Q, by looking for instances ¬ψσ which are T -satisfied by M, i.e.
whether M |=T ¬ψσ holds, given a background theory T . If no such instance exists, then
M satisfies E ∪ Q. Otherwise each of these instances is a witness of why M is not a suitable
candidate. They are added to the original problem with instantiation lemmas, thus removing this
candidate from consideration in the following iterations. The successive rounds of instantiation
either lead to unsatisfiability or, when no conflicting instance is generated, to satisfiability with
a concrete model. Ge and de Moura present several fragments of first-order logic in which MBQI
is complete, including fragments containing arithmetic.

Example 3.11 ([GdM09]). Let E ∪ Q be such that E = {f(a) ' 0, f(b) ' 1, a < 2} and
Q = {∀x. ¬(5 ≤ x) ∨ f(x) < 0}. A candidate model M which satisfies E could provide the
following interpretations for a, b, and f

aM = 0

bM = 2

fM = λx. ite(x < 2, 0, ite(x < 5, 1, −1))

since Jf(a)KM = 0, Jf(b)KM = 1, and JaKM < 2. To check whether the interpretationM satisfies
∀x. ¬(5 ≤ x) ∨ f(x) < 0 we consider the dual problem: is there a substitution σ such that
J(x > 5 ∧ f(x) ≥ 0)σKM holds? Consider an arbitrary substitution σ, with xσ being a term t.
To satisfy the first conjunct JtKM must be greater than 5, therefore Jf(t)KM must result in −1,
since the conditions to the two if-then-else expressions in fM will fail. Thus it is not possible to
have a substitution σ to which J(x > 5 ∧ f(x) ≥ 0)σKM holds. IndeedM satisfies the quantified
formula and therefore is a model for E ∪Q.

The central challenges in MBQI are building the candidate interpretation and evaluating
if it satisfies Q. Ge and de Moura built candidates as above, using lambda and if-then-else
expressions to create interpretations for function symbols. These interpretations coincide with
the term-generated interpretations from E on known terms and map all other terms to given
default values. The evaluation of Q inM is done by using a secondary ground CDCL(T) solver.
For each quantified formula ∀x̄n. ψ ∈ Q, the variables x̄n are replaced by fresh constants k̄n,
and then J¬ψ[k̄n]KM is encoded into a ground formula and the secondary ground solver checks
its satisfiability. If it is unsatisfiable then J∀x̄n. ψKM holds, otherwise the interpretations of k̄n
are used to derive a refining instantiation lemma.

Reynolds et al. [RTG+13] introduced alternative methods for constructing and checking

24

3.3. Other frameworks

candidate interpretations. While their model construction is in theory similar to the technique by
Ge and de Moura, their way of checking candidates is quite different. By representing candidates
with a special data structure, they apply a “bottom-up” approach: an instantiation is picked for
the variables of the quantified formula and an efficient evaluation engine determines whether
the instantiation leads to the formula being interpreted as ⊥, which would trigger a refining
instantiation. This flavour of MBQI is combined by Reynolds et al. [RTGK13] with a model
minimisation technique for E and the insertion of cardinality constraints in the solving in order
to perform finite-model finding.

3.3 Other frameworks

Model Construction Satisfiability Calculus The Model-Constructing Satisfiability Cal-
culus (mcSAT) is, analogously to CDCL(T), a generalization of CDCL that accommodates
reasoning modulo theories. It was proposed by de Moura and Jovanović [dMJ13] and has been
successfully applied for solving quantifier-free problems with non-linear arithmetic [JdM12] and
problems with bit-vectors [ZWR16]. Differently from CDCL(T), in mcSAT the conflict-driven
learning is performed not only at the propositional level but also at the theory level. The calcu-
lus incorporates theory decisions, i.e. heuristic assignments are made also for non-propositional
variables, and therefore also the corresponding propagations and explanations of conflicts for the
derivation of learned clauses at the theory level. How to incorporate first-order reasoning in the
framework is yet to be explored.

Hierarchic Superposition The superposition [BG94, NR01] calculus is a powerful combina-
tion of first-order resolution with orderings and rewriting for equality reasoning. For many years
it has been the go-to approach for automatic theorem proving in equational first-order logic.
Performing theory reasoning, however, was not commonly associated with superposition-based
systems despite the existence of a number of techniques for integrating it, as SMT solvers were
generally more suitable to handle problems with theory symbols.

A prominent approach for handling theories efficiently in superposition is to extend the set
of inference rules for abstracting away the theory reasoning, generating ground constraints to
be later discharged. An off-the-shelf SMT solver, for instance, can be invoked to evaluate the
constraints. This way the theory part of the problem is kept separated from the rest. This
technique is called Hierarchic Superposition and was proposed by Bachmair et al. [BGW94]
and later augmented by Baumgartner and Waldmann [BW13]. Refutational completeness is
guaranteed in certain restricted fragments, but nevertheless it has been implemented successfully
in the SPASS [AKW09, EKK+11] and Beagle [BBW15] theorem provers to integrate arithmetic
reasoning into superposition.

AVATAR modulo theories The AVATAR architecture proposed by Voronkov [Vor14] tightly
integrates a superposition theorem prover with a SAT solver in a layered approach. Similarly

25

Chapter 3. Satisfiability modulo theories solving

to the CDCL(T) framework, the first-order problem is abstracted into a propositional one, with
the SAT solver enumerating propositional assignments to be checked at the first-order level
by a superposition engine. By employing an SMT solver instead of a SAT solver Reger et
al. [RBSV16] extended the approach so that at the first-order level only assignments which are
groundly satisfiable, modulo the fixed theories, are considered.

The architecture is implemented in the Vampire [KV13] theorem prover, using the Z3 SMT
solver to check ground satisfiability. Moreover, the Vampire theorem prover is also capable
of performing theory reasoning directly at the first-order level, by introducing theory axioms
into the problem. These are generally quite explosive, but powerful heuristics are used so that
the overall system performs well in problems containing linear and non-linear real and integer
arithmetic, extensional arrays and algebraic data types.

Free-variables and theories Rümmer [Rüm08] introduced a constraint sequent calculus for
first-order logic modulo linear integer arithmetic. It combines a sequent calculus, based on
earlier work by Giese [Gie01] on free variable tableaux, with quantifier elimination, based on the
classic Omega test integer programming algorithm [Pug92], yielding a powerful framework that
is complete for first-order logic (without functions but with arbitrary uninterpreted predicates)
and a decision procedure for Presburger arithmetic, i.e. quantified linear integer arithmetic, being
also effective for their combination.

The final calculus enjoys similarities to CDCL(T). Among other techniques, such as using
ground decision procedures for the ground parts of the problem, Rümmer integrated trigger
based instantiation [Rüm12] as an optimization for his systematic handling of quantifiers. This
way the completeness results are independent of trigger selection or other heuristics, which are
used to potentially improve performance but do not hurt the formal guarantees of the framework.
The calculus has been successfully implemented in the Princess [Rüm12] theorem prover.

A historical shortcoming of tableaux and sequent based calculi is the handling of equality.
Backeman and Rümmer [BR15b] built on the above framework to introduce a novel way to
perform efficient equality reasoning in such a framework for equational first-order logic. They
introduced the problem of bounded simultaneous rigid E -unification (BREU), a decidable vari-
ant of the classic (and undecidable) problem of simultaneous rigid E -unification that is generally
inherent to performing equality reasoning in these calculi. Their approach has also been success-
fully implemented in the Princess system.

3.4 Certificates

Most automatic provers that support the TPTP syntax for problems generate proofs in TSTP
(Thousands of Solutions for Theorem Provers) format [SZS04]. A TSTP proof consists of a
list of inferences. TSTP does not mandate any inference system; the meaning of the rules and
the granularity of inferences vary across systems. For example, the E prover [Sch13] combines

26

3.4. Certificates

clausification, skolemization, and variable renaming into a single inference, whereas Vampire
[KV13] appears to cleanly separate preprocessing transformations. SPASS’s [WDF+09] custom
proof format does not record preprocessing steps; reverse engineering is necessary to make sense
of its output, and optimizations ought to be disabled [BBF+16, Sect. 7.3].

Most SMT solvers can parse the SMT-LIB [BFT15] format, but each solver has its own output
syntax. Z3’s proofs can be quite detailed [dMB08a], but rewriting steps often combine many
rewrites rules. CVC4’s format is an instance of LF [HHP87] with Side Conditions (LFSC) [Stu09];
despite recent progress [HBR+15, KBT+16], neither skolemization nor quantifier instantiation
are currently recorded in the proofs. Proof production in Fx7 [Mos08] is based on an inference
system whose formula processing fragment is subsumed by ours; for example, skolemization is
more ad hoc, and there is no explicit support for rewriting.

Proof assistants for dependent type theory, including Agda, Coq, Lean, and Matita, provide
very precise proof terms that can be checked by relatively simple checkers, meeting De Bruijn’s
criterion [BW05]. Exploiting the Curry–Howard correspondence, a proof term is a λ-term whose
type is the proposition it proves; for example, the term λx. x, of type A→ A, is a proof that A
implies A. Proof terms have also been implemented in Isabelle [BN00], but they slow down the
system considerably and are normally disabled. Frameworks such as LF, LFSC, and Dedukti
[CD07] provide a way to specify inference systems and proof checkers based on proof terms. Our
encoding into λ-terms is vaguely reminiscent of LF.

Isabelle and the proof assistants from the HOL family (HOL4, HOL Light, HOL Zero, and
ProofPower–HOL) are based on the LCF architecture [GMW79]. Theorems are represented by
an abstract data type. A small set of primitive inferences derives new theorems from existing
ones. This architecture is also the inspiration behind automatic systems such as Psyche [Gra13].
In Cambridge LCF, Paulson introduced an idiom, conversions, for expressing rewriting strategies
[Pau83]. A conversion is an ML function from terms t to theorems of the form t ' u. Basic
conversions perform β-reduction and other simple rewriting. Higher-order functions combine
conversions. Paulson’s conversion library culminates with a function that replaces Edinburgh
LCF’s monolithic simplifier. Conversions are still in use today in Isabelle and the HOL systems.
They allow a style of programming that focuses on the terms to rewrite—the proofs arise as a
side effect. Our framework is related, but we trade programmability for efficiency on very large
problems. Remarkably, both Paulson’s conversions and our framework emerged as replacements
for earlier monolithic systems.

Over the years, there have been many attempts at integrating automatic provers into proof
assistants. To reach the highest standards of trustworthiness, some of these bridges translate the
proofs found by the automatic provers so that they can be checked by the proof assistant. The
Tramp subsystem of Ωmega is one of the finest examples [Mei00]. For integrating superposition
provers with Coq, De Nivelle studied how to build efficient proof terms for clausification and
skolemization [dNiv02]. For SMT, the main integrations with proof reconstruction are CVC Lite
in HOL Light [MBG06], haRVey (veriT’s predecessor) in Isabelle/HOL [FMM+06], Z3 in HOL4

27

Chapter 3. Satisfiability modulo theories solving

and Isabelle/HOL [BW10, BFSW11], veriT in Coq [AFG+11], and CVC4 in Coq [EKK+16].
Some of these simulate the proofs in the proof assistant using dedicated tactics, in the style of
our simple checker for Isabelle (Sect. 6.3). Others employ reflection, a technique whereby the
proof checker is specified in the proof assistant’s formalism and proved correct; in systems based
on dependent type theory, this can help keep proof terms to a manageable size. A third approach
is to translate the SMT output into a proof text that can be inserted in the user’s formalization;
Isabelle/HOL supports veriT and Z3 in this way [BBF+16].

Proof assistants are not the only programs used to check machine-generated proofs. Ot-
terfier invokes the Otter prover to check TSTP proofs from various sources [ZMSZ04]. GAPT
imports proofs generated by resolution provers with clausifiers to a sequent calculus and uses
other provers and solvers to transform the proofs [HLRR13, EHR+16]. Dedukti’s λΠ-calculus
modulo [CD07] has been used to encode resolution and superposition proofs [Bur13], among oth-
ers. λProlog provides a general proof-checking framework that allows nondeterminism, enabling
flexible combinations of proof search and proof checking [Mil15].

28

Part I

Instantiation

29

Chapter 4

Congruence closure with free variables

As shown in Section 3.2, a central problem when applying instantiation techniques to handle
quantified formulas in the CDCL(T) framework is how to determine which instances to derive.
Each of the main techniques, be it trigger, conflict or model based instantiation, contributes
greatly to the efficiency of state-of-the-art solvers, yet each one is typically implemented inde-
pendently, in an ad-hoc manner and within their own specific settings.

In this chapter we present a uniform framework for reasoning with quantified formulas in
the theory of equality and uninterpreted functions in CDCL(T). We introduce the E-ground
(dis)unification problem as the cornerstone of this framework, in which trigger, conflict and
model based instantiation techniques can be cast. This problem relates to the classic problem of
rigid E -unification [DV98], pervasive to sequent and tableaux based calculi for equational first-
order logic. By exploiting the similarities between CDCL(T) and these frameworks, we build
on conventional techniques to solve E -unification and present a decision procedure for E-ground
(dis)unification: Congruence Closure with Free Variables (CCFV, for short), which extends
the classic congruence closure algorithm [NO80, NO07], to accommodate free variables. We
then show how to build on CCFV to perform trigger, conflict and model based instantiation.
A detailed accounting of the implementation and experimental evaluation of CCFV and the
instantiation techniques around it is given in Chapter 5. The work described in these chapters
led to a joint publication with Pascal Fontaine and Andrew Reynolds [BFR17].

Conventions Throughout the chapter we assume, for simplicity, and without loss of generality,
that all atomic formulas are equalities and that the term language is mono-sorted.

Given a set of ground terms T closed under the subterm relation and a congruence relation
' on T, a congruence over T is a subset of {s ' t | s, t ∈ T} closed under entailment. The
congruence closure (CC, for short) of a set of equations E on a set of terms T is the least
congruence on T containing E. Given a consistent set of equality literals E, two terms t1, t2 are
said to be congruent iff E |= t1 ' t2 and disequal iff E |= t1 6' t2. The congruence class in T of
a given term is the set of terms in T congruent to it. The signature of a term is the term itself
for a nullary symbol, and f(c1, . . . cn) for a term f(t1, . . . tn), with ci being the congruence class

30

4.1. E-ground (dis)unification

of ti. Since congruence classes are sets, function applications whose arguments are congruent
have the same signature. If e.g. a and b are equal, then f(a) and f(b) have the same signature.
The signature class of t is a set [t]E containing one and only one term in the congruence class
of t for each signature. Considering again the previous example, since f(a) and f(b) have the
same signature, only one of them would be in their signature class. Notice that the signature
class of two terms in the same congruence class is the same set of terms, and is a subset of their
congruence class. We drop the subscript in [t]E when E is clear from the context. The set of
signature classes of E on a set of terms T is Ecc = {[t] | t ∈ T}. We may overload the above
notations when E is a set of equality literals, not only of equalities. In this case we consider the
congruence closure with relation to the equalities in E.

We fix the entailment relation |= to represent entailment modulo ground equational reasoning,
i.e. given a set of ground equality literals E and ground terms s and t,

1. E |= s ' t if and only if [s]E = [t]E , and

2. E |= s 6' t if and only if there is a disequality s′ 6' t′ or t′ 6' s′ in the set E′, which is the
closure of E with relation to disequalities, such that [s]E = [s′]E and [t]E = [t′]E .

The entailment relation is extended in the expected manner to allow conjunctions and disjunc-
tions in the right hand side.

4.1 E-ground (dis)unification

Solving E-ground (dis)unification amounts to finding substitutions such that literals containing
free variables hold in a context of currently asserted ground literals. E-ground (dis)unification
is intrinsically related to the classic problem of rigid E -unification and is also NP-complete. The
classic problem of rigid E -unification is that of, given a set of equalities E and an equality u ' v,
finding a substitution σ such that uσ ' vσ follows from Eσ by ground equational reasoning,
i.e. such that Eσ |= uσ ' vσ holds. This problem has been studied extensively in the context
of automated theorem proving [Bec98, BS01, DV01], specially for the integration of equality
reasoning into tableaux [Häh01] and sequent calculi [DV01] based procedures. The simultaneous
version of the problem has to be considered in these cases, in which the same substitution σ must
be a solution to E -unification problems E1σ |= u1σ ' v1σ, . . . , Enσ |= unσ ' vnσ. Simultane-
ous rigid E -unification (SREU, for short) was famously shown to be undecidable by Degtyarev
and Voronkov [DV96]. Nevertheless, incomplete unification procedures can be used in such a
way that an overall complete first-order calculus may be obtained, as shown by Degtyarev and
Voronkov themselves [DV98] and by Giese [Gie02]. Recently Backeman and Rümmer [BR15b]
provided a complete first-order calculus based on a restricted case of SREU in which the possible
substitutions for variables are bound, yielding a decidable problem that they solve through an
encoding into SAT, using an off-the-shelf SAT solver to compute solutions.

31

Chapter 4. Congruence closure with free variables

We define below a variant of (non-simultaneous) E -unification in which we consider equality
literals instead of only equalities and in which E is ground. Moreover, we consider a conjunction
of literals in the right hand side.

Definition 4.1 (E-ground (dis)unification). Given two conjunctive sets of equality literals E
and L, with E ground, the E-ground (dis)unification problem is that of finding substitutions σ
such that E |= Lσ holds.

To show that E-ground (dis)unification is indeed a variant of rigid E -unification we prove
below that any problem E |= Lσ can be recast with only equalities in E and a single equality in
L:

Lemma 4.1 (Reduction to Rigid E -unification). To find solution substitutions σ for an E-ground
(dis)unification problem E |= Lσ can be cast to the problem of finding substitutions σ such that
Eeqσ |= uσ ' vσ, in which Eeq is a conjunctive set of equalities and u, v are terms.

Proof. First, we can assume that E is closed under entailment w.r.t. disequalities. Indeed, for
any set of ground equality literals E, retrieving all the disequalities that it entails can be done
polynomially. Let > be a constant and f6' a binary function symbol, both not appearing in
E ∪ L. Each disequality s 6' t in E ∪ L is replaced with f6'(s, t) ' > ∧ f6'(t, s) ' >.

For the transformation to preserve the entailment relation it is necessary to show that the
transformed disequalities in L are still entailed by the transformed disequalities in E modulo its
equalities. Assume that there is a disequality u 6' v in L such that E |= uσ 6' vσ. Since E is
closed under entailment w.r.t. disequalities, there is a disequality u′ 6' v′ or v′ 6' u′ in E such
that E |= u′ ' uσ ∧ v′ ' vσ. Considering the transformation of E ∪ L to remove disequalities,
it is straightforward to check that the entailment

E ∧ f6'(u′, v′) ' > ∧ f6'(v′, u′) ' > |= f6'(uσ, vσ) ' > ∧ f6'(vσ, uσ) ' > ∧ L

continues to hold, as well as that applying the same process to all other disequalities in E |= Lσ

preserves the entailment into the resulting

Eeq |= s1σ ' t1σ ∧ · · · snσ ' tnσ

which, by taking a fresh n-ary function symbol f , can then be transformed into the equivalent
Eeq |= f(s1, . . . , sn) ' f(t1, . . . , tn). Since Eeq contains only equations, there is a single equation
in the conclusion and the removal of disequalities preserves the entailment relation, E-ground
(dis)unification is shown to be an instance of rigid E -unification.

Example 4.1. Consider the sets of equality literals E = {f(a) ' f(b), h(a) ' h(c), g(b) 6' h(c)}
and L = {h(x1) ' h(c), h(x2) 6' g(x3), f(x1) ' f(x3), x4 ' g(x5)}. A solution σ for their E-
ground (dis)unification problem E |= Lσ is σ = {x1 7→ a, x2 7→ c, x3 7→ b, x4 7→ g(x5)}.

32

4.1. E-ground (dis)unification

The above example shows that x5 can be mapped to any term; this E-ground (dis)unification
problem has infinitely many solutions. We show below how the set of all solutions of a given
E-ground (dis)unification can be finitely represented. Without loss of generality, we assume that
T(E ∪ L) contains at least one ground term.

Theorem 4.2. Given an E-ground (dis)unification problem, if a substitution σ exists such that
E |= Lσ, then there is an acyclic substitution σ′ such that ran(σ′) ⊆ T(E ∪ L), σ′? is ground,
and E |= Lσ′?.

Proof. First, we can assume that σ is ground. Indeed, if a non-ground substitution σ is such
that E |= `σ, then E |= `σσg holds for any ground substitution σg. For convenience and without
loss of generality, assume all terms in L are flat. We introduce for this proof the notations
Eσ = {x ' xσ | x ∈ dom(σ)} and St = {t′ | t′ ∈ T(E ∪ L ∪Eσ) and E ∪ Eσ |= t ' t′}, in which
σ is a substitution and t is a term. Note that E |= Lσ? holds if and only if E ∪ Eσ |= L also
does.

To compute the congruence closure of a set of equations E on a set of terms T, it suffices to
compute a congruence graph on T. Two terms t, t′ are equal according to E if and only if there
is a path between them in the graph. There is a full edge in the graph between two terms in any
equation of E, and there is a congruence edge between two terms such that all arguments are
pairwise equal (i.e., there is a path between them). Some (congruence or full) redundant edges
can be omitted if the extremities are already connected. The congruence graph is a least fixed
point, so the explanation for the existence of a congruence edge can always be traced back to
full edges only. Congruence edges can be ordered by their dependency.

Consider a congruence graph G induced by E on terms T(E ∪ L ∪ Eσ), and a congruence
graph G′ induced by furthermore adding edges for σ. Besides the edges corresponding to σ,
that is, edges with a variable, the only additional edges are congruence edges; we assume no
redundant edge is added to G′. Variables are at most linked to one term, and by a full edge.
Other non-variable free term can only be linked either by a full edge to a variable, or to a term
by a congruence edge.

All edges in G′ \ G involve at least one term u that is not (directly or indirectly) linked to
any ground term in G. This is obviously true for full edges, since variables are not linked to
any term in G. Consider the earliest (according to the dependency order of congruence edges)
congruence edge between f(t1, . . . , tn) and f(t′1, . . . , t

′
n) contradicting this hypothesis. Then

there is a path from f(t1, . . . , tn) to a ground term; this path cannot contain full edges, because
this would involve two edges with a variable. Hence the path only contain congruence edges and
t1, . . . tn are all equal to ground terms. The same holds for f(t′1, . . . , t

′
n), then ti and t′i are both

linked to ground terms, for i ∈ {1, . . . n}. One new earlier edge contradicts the hypothesis too.
As a corollary of the previous paragraph, given two terms t, t′, if both terms are ground,

E ∪ Eσ |= t ' t′ if and only if E |= t ' t′.
In the following, we build an acyclic substitution σ′ such that ran(σ′) ⊆ T(E ∪ L), and for

two terms t1, t2 ∈ T(E ∪ L), E ∪ Eσ |= t1 ' t2 if and only if E ∪ Eσ′ |= t1 ' t2. Grounding σ′

33

Chapter 4. Congruence closure with free variables

is again trivial. For each variable x in dom(σ), if Sx contains a ground term t in T(E ∪L), then
xσ′ = t. Otherwise if Sx contains a term in u ∈ T(L), for all variables y in Sx, yσ′ = u. If Sx
does not contain any term in T(E ∪ L), a variable z in Sx is chosen, and for all variables y in
Sx, yσ′ = z. Trivially, ran(σ′) ⊆ T(E ∪ L).

Now we prove that E ∪ Eσ′ |= L if and only if E ∪ Eσ |= L, or further, that for any two terms
t, t′ in T(E ∪ L), E ∪ Eσ′ |= t ' t′ if and only if E ∪ Eσ |= t ' t′. Since E ∪ Eσ |= E ∪ Eσ′ ,
the only non trivial direction is that, if E ∪ Eσ |= t ' t′, E ∪ Eσ′ |= t ' t′. This has already be
proven in the case of two ground terms. By construction σ and σ′ induce the same partition on
the variables, so this is true also if t and t′ are two variables. If there is a path between t and
t′ with only congruence edges in the graph for E ∪ Eσ, t and t′ are still congruent according to
E ∪ Eσ′ , thanks to the fact that equality between variables and equality between ground terms
is preserved. As a corollary, any equality between terms in T(E ∪ L) is preserved.

The substitution σ′ is acyclic. Otherwise for some n,

E ∪ Eσ |= xi ' fi(. . . , x(i+1) mod n, . . .)

(i ∈ {1, . . . n}) and also, since σ is ground,

E ∪ Eσ |= x1 ' f1(. . . , x(2 mod n), . . .) ∧ x1 ' t

for some ground term t. Thus f1(. . . , x(2 mod n), . . .) and t = fj(. . . , t
′, . . .) are congruent, there-

fore j = 1 and x(2 mod n) and t′ should be equal. By successive application of the same reasoning
step, there exists some xi and a constant a such that E ∪ Eσ |= xi ' a ' fi(. . . , x(i+1) mod n, . . .),
which contradicts the fact that only one equality contains xi in Eσ.

From now on we only consider solutions σ, for a given E-ground (dis)unification problem
E |= Lσ, such that σ is acyclic, ran(σ) ⊆ T(E ∪ L) and E |= Lσ′?.

As a corollary of Theorem 4.2, the E-ground (dis)unification problem is in NP: it suffices
indeed to guess an acyclic substitution mapping variables to terms in T(E ∪ L) whose fixpoint
is a ground substitution and check (polynomially) that it is a solution. The problem is also
NP-hard, by reduction of 3-SAT.

Theorem 4.3 (E-ground (dis)unification is NP-complete). Finding solutions for E-ground
(dis)unification is NP-complete.

Proof. E-ground (dis)unification is NP since it can be verified, in polynomial time, with a classic
congruence closure procedure, for instance, that a substitution σ solves the entailment problem.
The proof of its NP-hardness is done through an encoding of 3-SAT into the entailment.

Let C be a set of 3-clauses containing literals over a set of propositions P. Let >,⊥ be
constants and p a unary operator such that, for any proposition, p(p) = > and p(¬p) = ⊥. For
each clause C ∈ C, let fC be a ternary function. For each proposition p ∈ P, let xp be a variable.

34

4.1. E-ground (dis)unification

The set of equality literals E ∪ L is built such that

E =
⋃

C=`1∨`2∨`3∈C

{
fC(p(`1),p(`2),p(`3)) ' > p(`1) = > or p(`2) = >

or p(`3) = >

}

L =
⋃

C=`1∨`2∨`3∈C

{
fC(xp1 , xp2 , xp3) ' > `i = pi or `i = ¬pi, i ∈ {1..3}

}
With this encoding the search for a substitution σ such that E |= Lσ can be seen as determining
the satisfiability of C.

4.1.1 Recasting instantiation techniques

We show below how each of the main instantiation techniques used in the CDCL(T) framework
are recast using E-ground (dis)unification. This forms the cornerstone of a framework based on
a single solving method to be used in a modular way when handling instantiation techniques in
CDCL(T).

4.1.1.1 Trigger based instantiation

As discussed in Section 3.2.1, a trigger T for a quantified formula ∀x̄n. ψ is a set of non-ground
terms which collectively contain all variables bound by the quantifier, i.e. T = {u1, . . . , um} such
that u1, . . . , um ∈ T(ψ) and {x̄n} ⊆ FV(u1)∪· · ·∪FV(um). Instantiations are determined by E -
matching all terms in T with terms in T(E), such that resulting substitutions allow instantiating
∀x̄n. ψ into ground formulas. Computing such substitutions amounts to solving the E-ground
(dis)unification problem

E |= (u1 ' y1 ∧ · · · ∧ um ' ym)σ

with the further restriction that σ is acyclic, ran(σ) ⊆ T(E ∪ L) and σ is ground. This forces
each yi to be grounded into a term in T(E), thus enumerating all possibilities for E -matching
ui. The desired instantiations are obtained by restricting the found solutions to x̄n.

Example 4.2. Consider the conjunctive sets E = {f(a) ' g(b), h(a) ' b, f(a) ' f(c)} and
Q = {∀x. f(x) 6' g(h(x))}. Triggers from Q are T1 = {f(x)}, T2 = {h(x)}, T3 = {f(x), g(h(x))}
and so on. The instantiations from these triggers are derived from the solutions yielded by for
the respective problems:

– E |= (f(x) ' y)σ, which is solved by the substitutions σ1 = {y 7→ f(a), x 7→ a} and
σ2 = {y 7→ f(c), x 7→ c}

By considering the part of the solutions that range over x, the instantiation lemmas gen-
erated would be, as in Example 4.2,

∀x. f(x) 6' g(h(x))→ f(a) 6' g(h(a)) (4.1)

35

Chapter 4. Congruence closure with free variables

and
∀x. f(x) 6' g(h(x))→ f(c) 6' g(h(c)) (4.2)

– E |= (h(x) ' y)σ, solved by σ = {y 7→ h(a), x 7→ a}, yielding only the instantiation
lemma 4.1.

– E |= (f(x) ' y1 ∧ g(h(x)) ' y2)σ, by σ = {y1 7→ f(a), y2 7→ g(b), x 7→ a}, also yielding
only the instantiation lemma 4.1.

4.1.1.2 Conflict based instantiation

As discussed in Section 3.2.2, given a ground model E ∪ Q, a conflicting instance with E for a
quantified formula ∀x̄n. ψ ∈ Q is some ground ψσ such that E |= ¬ψσ. Finding a conflicting
instance amounts to solving the E-ground (dis)unification problem

E |= ¬ψσ, for some ∀x̄n. ψ ∈ Q

since ¬ψ is a conjunction of equality literals.

Example 4.3. Let E and Q be as in Example 4.2. Finding conflicting instances corresponds to
solving the problem

E |= (f(x) ' g(h(x)))σ

whose unique solution is σ = {x 7→ a}. It leads to the instantiation lemma

∀x. f(x) 6' h(g(x))→ f(a) 6' h(g(a))

which forces the derivation of a new candidate model E ∪Q.

4.1.1.3 Model based instantiation (MBQI)

As discussed in Section 3.2.3, the satisfiability of E ∪Q is assessed by attempting to build
a model and checking whether it indeed satisfies both E and Q. The interesting case is the
satisfaction of Q. It is determined by independently evaluating each of its quantified formulas in
the candidate interpretation. This evaluation is performed in much the same way as the search
for conflicting instances described in Section 3.2.2 and revisited above in terms of E-ground
(dis)unification. We build on this observation to present below an alternative way of performing
MBQI. We extend E and look for conflicting instances between Q and this extension through
an entailment check defined in terms of E-ground (dis)unification. This way one can evaluate if
every model of the resulting extension Etot is also a model of E ∪Q and, in the negative case,
derive instantiations that refine the construction of Etot. Here we follow the model construction
guidelines by Reynolds et al. [RTG+13].

36

4.2. Calculus

Model construction A distinguished term eτ is associated to each sort τ ∈ S. For each f ∈ F
with sort 〈τ1, . . . , τn, τ〉 a default value ξf is defined such that

ξf =

{
f(t1, . . . , tn) ∈ T(E) if [t1] = [eτ1], . . . , [tn] = [eτn]

some t ∈ T(E) otherwise

The extension is built such that all ground terms not occurring in E which might be considered
when evaluating Q are present in the congruence closure of Etot, according to the respective
default values; and all terms in T(E) not asserted equal are explicitly asserted disequal, i.e.

Etot = E ∪
⋃

t1,t2∈T(E)
{t1 6' t2 | E 6|= t1 ' t2}⋃

∀x̄n. ψ∈Q,t∈T(E)

{
f(s̄n)σ ' ξf σ = {x̄ 7→ t̄}, f(s̄n) ∈ T(ψ) and

f(s̄n)σ is not in the CC of E.

}

Finding model conflicting instances As above, finding conflicting instances amounts to
solving the E-ground (dis)unification problem

Etot |= ¬ψσ, for some ∀x̄n. ψ ∈ Q

Example 4.4. Let E = {f(a) ' g(b), h(a) ' b}, Q = {∀x. f(x) 6' g(x), ∀xy. ψ} and e = a,
with all terms having the same sort. The computed default values of the function symbols are
ξf = f(a), ξg = a, ξh = h(a). For simplicity, the extension Etot is shown explicitly only for
∀x. f(x) 6' g(x),

Etot = E ∪ {a 6' b, a 6' f(a), b 6' f(a)}
∪ {f(b) ' f(a), f(f(a)) ' f(a), g(a) ' a, g(f(a)) ' a} ∪ {. . . }

Solving the E-ground (dis)unification

{. . . , f(a) ' g(b), f(b) ' f(a), . . . } |= f(x) ' g(x)σ

leads to the solution σ = {x 7→ b}, from which the instantiation lemma

∀x. f(x) 6' g(x)→ f(a) 6' g(a)

will prevent the derivation of the candidate model Etot again.

4.2 Calculus

The intrinsic relation between E -unification and congruence closure has been investigated by
Goubault [Gou93] and Tiwari et al. [TBR00]. They integrate variations of the classic proce-
dure with first-order rewriting techniques and search for solutions guided by the structure of the
terms. We build on these ideas and propose a calculus to find substitutions σ solving an E-
ground (dis)unification problem E |= Lσ. This calculus, Congruence Closure with Free Variables

37

Chapter 4. Congruence closure with free variables

(CCFV), uses a congruence closure algorithm as a core element to guide the search and build
solutions. We share with these related works the belief that the congruence closure algorithms,
being very efficient at checking solutions, can also be the core of efficient algorithms to discover
them. CCFV however differs from those previous techniques notably, since it handles disequal-
ities and more importantly since the search for solutions is pruned based on the structure of a
ground model, which makes it most suitable for a CDCL(T) context.

The calculus proceeds by building a conjunctive set of equations Eσ such that E ∪ Eσ |= L,
in which Eσ corresponds to a solution substitution built based on the entailment conditions of
the literals in L. These conditions are determined according to the structure of the literals and
to the signature classes in E. We restrict ourselves to signature classes rather than congruent
classes so that less possibilities for solutions need to be considered, since terms with the same
signature are indistinguishable with relation to entailment conditions.

Theorem 4.4 (Entailment conditions). Given a consistent conjunctive set of ground equality
literals E and an equality literal `, a ground substitution σ, as defined in Theorem 4.2, exists
such that E |= `σ if and only if

1. ` is x ' y and

a) xσ = yσ or

b) there are ground terms t1, t2 such that xσ ∈ [t1], yσ ∈ [t2], and [t1] = [t2]

2. ` is x ' f(s1, . . . , sn), x occurs in f(s1, . . . , sn), and there are ground terms t1, t2 ∈ T(E)

such that xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

3. ` is x ' f(s1, . . . , sn), x does not occur in f(s1, . . . , sn) and

a) xσ = f(s1, . . . , sn)σ or

b) there are ground terms t1, t2 such that xσ ∈ [t1], f(s1, . . . , sn)σ ∈ [t2], and [t1] = [t2]

4. ` is f(u1, . . . , un) ' g(v1, . . . , vn) and

a) f = g and E |= u1σ ' v1σ, . . . , E |= unσ ' vnσ or

b) there are ground terms t1, t2 ∈ T(E) such that [t1] = [t2], f(u1, . . . , un)σ ∈ [t1], and
g(v1, . . . , vn)σ ∈ [t2]

5. ` is u 6' v and there are ground terms t1, t2 ∈ T(E) such that E |= t1 6' t2, uσ ∈ [t1], and
vσ ∈ [t2]

Proof. Since ` is either an equality or a disequality, each term is either a variable or a function
application, and a variable either occurs or not in a term, the cases shown are exhaustive for the
structure of `. For each case we show that if, for some arbitrary substitution σ, E |= `σ, then
one of the side conditions must hold, and that if any side condition holds, then E |= `σ.

38

4.2. Calculus

Case 1: Condition (1a) states that xσ and yσ are the same term, while (1b) that they are
(possibly different) congruent terms. Each implies that the entailment holds. If E |= `σ and
both (1a) and (1b) fail, then xσ and yσ are not congruent terms, which is a contradiction.

Case 2: the side condition implies the entailment. If E |= `σ, and since x occurs in f(s1, . . . , sn),
then xσ and f(s1, . . . , sn)σ are different terms occurring in the same congruence class. This
class must contain both a term t and a term f(t1, . . . , tn) on which the former is congruent to
a subterm of the latter. This can only be the case if both t and f(t1, . . . , tn) occur in E.

Case 3: Similarly to 1, both conditions imply that the entailment holds and it holding while
the conditions do not is a contradiction. The conditions are independent of x occurring on
f(s1, . . . , sn), since (3b) does not restrict the ground terms t1, t2.

Case 4: By congruence, if condition (4a) holds then the function applications are congruent,
while (4b) directly implies they are. If E |= `σ and since it is not possible for two different function
applications not in T(E) to be congruent, then f = g and f(u1, . . . , un)σ and g(v1, . . . , vn)σ are
the same function application over congruent arguments, or f(u1, . . . , un)σ and g(v1, . . . , vn)σ

are ground terms occurring in E and in the same congruence class in Ecc.

Case 5: Since two terms not in T(E) cannot be entailed disequal unless they are congruent
to two terms in T(E) which are disequal, E |= `σ holds if and only if uσ and vσ are in the
congruence classes of disequal terms occurring in E.

Note that in cases (1), (3) and (4a) the entailment does not necessarily depend on E, i.e. a
solution that make the terms syntactically equal is possible. The other cases, however, can only
be entailed if there are certain terms in E into which the non-ground terms can be made equal
to by the substitution.

Example 4.5. Considering again E and L as in Example 4.1, the calculus should find a substi-
tution σ such that

f(a) ' f(b) ∧ h(a) ' h(c) ∧ g(b) 6' h(c)

|= (h(x1) ' h(c) ∧ h(x2) 6' g(x3) ∧ f(x1) ' f(x3) ∧ x4 ' g(x5))σ

This substitution can be built by analyzing the entailment conditions for each of the literals in
L and how they can be consistently combined. A conjunctive set of equations Eσ from which
such a substitution can be derived, i.e. such that E ∪ Eσ |= L, is built considering that:

– h(x1) ' h(c): either x1 ' c, due to condition (4a), or x1 ' a, due to (4b), appears in Eσ;

– h(x2) 6' g(x3): either x2 ' c ∧ x3 ' b or x2 ' a ∧ x3 ' b, both due to condition (5),
appears in Eσ;

– f(x1) ' f(x3): either x1 ' x3, due to (4a), or x1 ' a ∧ x3 ' b or x1 ' b ∧ x3 ' a, both
due to (4b), must be in Eσ;

– x4 ' g(x5): due to condition (3a), the literal itself must be in Eσ.

39

Chapter 4. Congruence closure with free variables

A possible solution is thus Eσ = {x1 ' a, x2 ' a, x3 ' b, x4 ' g(x5)}, corresponding to the
acyclic substitution σ = {x1 7→ a, x2 7→ a, x3 7→ b, x4 7→ g(x5)}. Note that, for any ground term
t ∈ T(E∪L), σg = σ∪{x5 7→ t} is such that ran(σg) ⊆ T(E∪L), σg? is ground, and E |= Lσg

?.

Given an E-ground (dis)unification problem E |= Lσ, the CCFV calculus computes the
various possible Eσ corresponding to a coverage of all substitution solutions, i.e. such that
E ∪ Eσ |= L, whose range is in T(E ∪ L). We describe the calculus as a set of rules that
operate on states of the form Eσ E C, in which C is a formula stemming from the decom-
position of L into an AND-OR combination of simpler constraints, and Eσ is a conjunctive set
of equalities representing a partial solution for a given combination. Starting from the initial
state > E L the right hand side of the state is progressively decomposed, whereas the left side
is step by step augmented with new equalities building the candidate solution. > represents
an empty conjunctive set. Moreover, as the partial solution is built the remaining constraints
are updated to reflect the current assignments of variables, therefore searching only for further
solutions which are compatible with the current one. Example 4.5 shows that, for a literal to be
entailed by E ∪ Eσ, sometimes several solutions Eσ exist, thus the calculus involves branching.
To simplify the presentation, the rules do not apply branching directly, but build disjunctions on
the right part of the state which later lead to branching. A branch is closed when its constraint
is decomposed into either ⊥ or >. The latter are branches for which E ∪ Eσ |= L holds.

The set of CCFV derivation rules is presented in Table 4.1. As a convention, t stands for
a ground term, x, y for variables, u for non-ground terms, u1, . . . , un for terms such that at
least one is non-ground and s, s1, . . . , sn for terms in general. Rules are applied top-down, the
symmetry of equality being used implicitly. Each rule simplifies the constraint of the right hand
side of the state, and as a consequence any derivation strategy is terminating (Theorem 4.5).

When an equality is added to the left hand side of a state Eσ E C (rule Assign), the
constraint C is normalized with respect to congruence closure to reflect the assignments to
variables. That is, all terms in C are representatives of classes in the congruence closure of
E ∪ Eσ. We write

rep(Eσ, x) =

{
some chosen y ∈ [x]Eσ if all terms in [x]Eσ are variables
rep(Eσ, f(s̄n)) otherwise, for some f(s̄n) ∈ [x]Eσ

rep(Eσ, f(s1, . . . , sn)) =

{
f(s1, . . . , sn) if f(s1, . . . , sn) is ground
f(rep(Eσ, s1), . . . , rep(Eσ, sn)) otherwise

and write rep(Eσ, C) to denote the result of applying rep according to E ∪ Eσ on both sides of
each literal s ' s′ or s 6' s′ in C. The above definition of rep leaves room for some choice of
representative, but soundness and completeness are not impacted by the choice. What actually
matters is whether the representative is a variable, a ground term or a non-ground function
application. The Assign rule adds equations from the right side of the state into the tentative
solution in the left side of the state: it extends Eσ with the mapping for a variable. Because C

40

4.2. Calculus

Eσ E x ' s ∧ C
Assign if x 6∈ FV(s)

Eσ ∪ {x ' s} E rep({x ' s}, C)

Eσ E x ' f(ūn) ∧ C
Uvar if x ∈ FV(f(ūn))

Eσ E
∨

[t]∈Ecc, f(t̄n)∈[t]
(x ' t ∧ u1 ' t1 ∧ · · · ∧ un ' tn ∧ C)

Eσ E f(ūn) ' f(s̄n) ∧ C
Ucomp

Eσ E (u1 ' s1 ∧ · · · ∧ un ' sn ∧ C) ∨∨
[t]∈Ecc, f(t̄n)∈[t], f(t̄′n)∈[t]

(
u1 ' t1 ∧ · · · ∧ un ' tn ∧
s1 ' t′1 ∧ · · · ∧ sn ' t′n ∧ C

)
Eσ E f(ūn) ' g(s̄m) ∧ C

Ugen if f 6= g

Eσ E
∨

[t]∈Ecc,
f(t̄n)∈[t], g(t̄′m)∈[t]

(
u1 ' t1 ∧ · · · ∧ un ' tn ∧
s1 ' t′1 ∧ · · · ∧ sm ' t′m ∧ C

)

Eσ E x 6' y ∧ C
Dvar

Eσ E
∨

[t], [t′]∈Ecc, E|=t6't′
(x ' t ∧ y ' t′ ∧ C)

Eσ E x 6' f(s̄n) ∧ C
Dfapp

Eσ E
∨

[t], [t′]∈Ecc,
E|=t6't′, f(t̄′n)∈[t′]

(x ' t ∧ s1 ' t′1 ∧ · · · ∧ sn ' t′n ∧ C)

Eσ E f(ūn) 6' g(s̄m) ∧ C
Dgen

Eσ E
∨

[t], [t′]∈Ecc, E|=t6't′,
f(t̄n)∈[t], g(t̄′m)∈[t′]

(
u1 ' t1 ∧ · · · ∧ un ' tn ∧
s1 ' t′1 ∧ · · · ∧ sm ' t′m ∧ C

)

Eσ E C1 ∨ C2
Split

Eσ E C1 Eσ E C2

Eσ E ` ∧ C
Yield if E |= `

Eσ E C

Eσ E ` ∧ C
Fail

Eσ E ⊥
if ` is ground and E 6|= `

Table 4.1: The CCFV calculus in equational FOL. E is fixed from a problem E |= Lσ.

41

Chapter 4. Congruence closure with free variables

is replaced by rep({x ' s}, C), one variable (either x, or s, if it is a variable, depending on the
representative chosen) disappears from the right side.

The other rules can be divided into two categories. The branching rules (Uvar through
Dgen) enumerate all possibilities for deriving the entailment of some literal from C. The rules
are based on the entailment conditions from Theorem 4.4. Condition (1) is represented by
rule Assign. Condition (2) by rule Uvar. Condition (3) by rule Assign. Condition (4b)

is represented by rules Ucomp and Ugen, with the first also accounting for condition (4a).
Condition (5) is handled by rules Dvar, Dfapp and Dgen, which restrict the terms to consider
according to the structure of the constraint.

Example 4.6. The rule Ucomp enumerates the possibilities for which a literal of the form
f(u1, . . . , un) ' f(s1, . . . , sn) is entailed, which may be due to their arguments being congruent,
since both terms have the same top symbol, or by E -matching f -terms occurring in the same
signature class of Ecc. The generated entailment conditions are that either u1 ' s1, . . . , un ' sn
can be entailed or there is a term t ∈ T(E) into which both f(u1, . . . , un) and f(s1, . . . , sn)

can be entailed equal. For the second condition to hold there must be f -terms f(t1, . . . , tn) and
f(t′1, . . . , t

′
n) in [t] such that u1 ' t1, . . . , un ' tn and s1 ' t′1, . . . , sn ' t′n can be entailed.

The structural rules (Split, Fail and Yield) create or close branches. Split creates
branches when there are disjunctions in the constraint. Fail closes a branch when it is no
longer possible to build on the current solution to entail the remaining constraints, i.e. a ground
constraint was derived that cannot be entailed by E. Yield removes constraints from the right
hand side of the state. When no more constraints remain to be entailed, the empty conjunction
> is derived. In this case Eσ embodies a set of solutions for the given E-ground (dis)unification
problem.

Each conjunctive set Eσ defines a substitution σ = {x 7→ rep(Eσ, x) | x ∈ FV(L)}. If a
branch is closed with Yield, the set Sols(Eσ) of all ground solutions extractable from Eσ is
composed of substitutions σg which extend σ by mapping all variables in ran(σ?) into ground
terms in T(E ∪ L), such that each σg is acyclic, σ?g is ground and E |= Lσ?g .

4.2.1 Strategy

A possible derivation strategy for CCFV, given an initial state > E L, is to apply the sequence
of steps described below at each state Eσ E C. Let sel be a function that selects a literal
from a conjunction according to some heuristic, such as selecting first literals with less variables
or literals whose top symbols have less ground signatures in Ecc. The result of sel is denoted
selected literal. Since no two rules can be applied on the same literal, the function sel effectively
enforces an order on the application of the rules. Moreover, the branch selection strategy assumes
that each branch is explored to the end before a new one is considered.

1. Select branch: While C is a disjunction, apply Split and consider the leftmost branch, by

42

4.2. Calculus

convention.

2. Simplify constraint : Apply the rule for which sel(C) is amenable.

3. Discard failure: If Fail was applied or a branching rule had the empty disjunction as a
result, discard this branch and consider the next open branch.

4. Mark success: If the right hand side has been reduced to >, all remaining constraints in
the branch are entailed by E ∪ Eσ. Mark the branch as successful and then consider the
next open branch.

A solution σ for the E-ground (dis)unification problem E |= Lσ can be extracted at each suc-
cessful branch.

Example 4.7. Consider again the sets E = {f(a) ' f(b), h(a) ' h(c), g(b) 6' h(c)} and
L = {h(x1) ' h(c), h(x2) 6' g(x3), f(x1) ' f(x3), x4 ' g(x5)}, as in Example 4.1. The set of
signature classes of E, which coincides with its set of congruence classes, is

Ecc = {{a}, {b}, {c}, {f(a), f(b)}, {h(a), h(c)}, {g(b)}}

with the disequalities entailed by E being g(b) 6' h(c) and g(b) 6' h(a).
Let sel select first literals in C with the minimal number of variables. The derivation

tree produced by CCFV for this problem is shown below. Selected literals are underlined.
Disjunctions and the application of Split are kept implicit to simplify the presentation, as is
the handling of x4 ' g(x5). Its entailment does not relate with the other literals in L and it can
be solved by an early application of Assign.

> E h(x1) ' h(c) ∧ h(x2) 6' g(x3) ∧ f(x1) ' f(x3)
UcompA B

Since h(x1) ' h(c) leads to the constraints x1 ' c ∨ x1 ' a and a subsequent splitting of the
derivation, A is

> E x1 ' c ∧ h(x2) 6' g(x3) ∧ f(x1) ' f(x3)
Assign{x1 ' c} E h(x2) 6' g(x3) ∧ f(c) ' f(x3)

Ucomp{x1 ' c} E h(x2) 6' g(x3) ∧ x3 ' c
Assign{x1 ' c, x3 ' c} E h(x2) 6' g(c)

Dgen{x1 ' c, x3 ' c} E ⊥
Fail{x1 ' c, x3 ' c} E ⊥

and B is
> E x1 ' a ∧ h(x2) 6' g(x3) ∧ f(x1) ' f(x3)

Assign{x1 ' a} E h(x2) 6' g(x3) ∧ f(a) ' f(x3)
Ucomp{x1 ' a} E h(x2) 6' g(x3) ∧ x3 ' a

Assign{x1 ' a, x3 ' a} E h(x2) 6' g(a)
Dgen{x1 ' a, x3 ' a} E ⊥

Fail{x1 ' a, x3 ' a} E ⊥

{x1 ' a} E h(x2) 6' g(x3) ∧ x3 ' b
Assign{x1 ' a, x3 ' b} E h(x2) 6' g(b)

Dgen
C1 C2

43

Chapter 4. Congruence closure with free variables

with C1 and C2 being the following derivations split from the disjunction x2 ' a∨x2 ' c derived
from h(x2) ' g(b):

{x1 ' a, x3 ' b} E x2 ' a
Assign{x1 ' a, x2 ' a, x3 ' b} E >
Yield{x1 ' a, x2 ' a, x3 ' b} E >

{x1 ' a, x3 ' b} E x2 ' c
Assign{x1 ' a x2 ' c, x3 ' b} E >
Yield{x1 ' a, x2 ' c, x3 ' b} E >

A solution Eσ = {x1 ' a, x2 ' a, x3 ' b, x4 ' g(x5)} such that E ∪ Eσ |= L holds is produced
by C1, corresponding to the same Eσ respecting the entailment conditions shown in Example 4.5.
Note that C2 also provides a solution, differing from Eσ only on the assignment to x2.

4.2.2 Correctness

Theorem 4.5 (Termination). All derivations in CCFV are finite.

Proof. The Split rule is the only one to increase the width of a derivation tree. Its application
is bounded by the size of the disjunctions, which in turn is bound by the number of signature
classes in Ecc. Therefore Split can only be applied a finite number of times. It then suffices to
show that the depth of the tree is also bounded. For simplicity, but without any fundamental
effect on the proof, let us assume that all rules but Split are applied on conjunctions. Let d(C)

be the sum of the depths of all occurrences of variables in the literals of the conjunction C. The
Assign rule decreases the number of variables of C. The Fail rule closes a branch. The Yield

removes constraints, of which there are only finitely many. All remaining rules decrease d in the
transition from Eσ E C to E′σ E C ′1 ∨ · · · ∨C ′n, i.e. d(C) > d(C ′1), . . . , d(C) > d(C ′n). At each
node, d(C) or the number of variables in C are decreasing, except at the Split, Fail or Yield

steps. Since no branch can contain infinite sequences of these applications, the depth of the any
derivation tree is always finite.

Lemma 4.6 (Solutions produce ground substitutions). Given a computed solution Eσ for an
E-ground (dis)unification problem E |= Lσ, each σg ∈ Sols(Eσ) is an acyclic substitution such
that ran(σg) ⊆ T(E ∪ L) and σ?g is ground.

Proof. The Assign rule is the only one that augments Eσ, adding a term from T(L) to the
congruence class of a variable in Ecc

σ . The occurs check in the side condition, together with the
application of rep after the assignment on the remaining constraints in the branch, ensures that
a variable is not assigned to a term in which it occurs. Therefore, by induction on the structure
of derivation trees, the substitution σ = {x 7→ rep(Eσ, x) | x ∈ FV(L)} built from Eσ is acyclic
and ran(σ) ⊆ T(E ∪ L). Thus each

σg =

{
x 7→ trep(Eσ , x) x ∈ FV(L), trep(Eσ , x) is rep(Eσ, x) if rep(Eσ, x) is non-variable or

some chosen ground t ∈ T(E ∪ L) otherwise

}

is also acyclic, σ?g is ground, and ran(σg) ⊆ T(E ∪ L).

44

4.2. Calculus

Lemma 4.7 (Rules capture entailment conditions). There is an applicable rule in the calculus
for any arbitrary equality literal `.

Proof. If ` is ground, then Yield or Fail are applicable, according to whether it is entailed by
E. We otherwise proceed by case analysis on the structure of the literal, according to the cases
in Theorem 4.4.

Case 1, ` = x ' y: If x = y, the rule Yield is applicable, otherwise it is Assign.

Case 2, ` = x ' f(s1, . . . , sn), and x occurs in f(s1, . . . , sn): The rule Uvar is the only
applicable one.

Case 3, ` = x ' f(s1, . . . , sn) and x does not occur in f(s1, . . . , sn): the only rule applicable
is Assign.

Case 4, ` = f(u1, . . . , un) ' g(v1, . . . , vn): if f = g the rule Ucomp is applied, otherwise
Ugen is.

Case 5, ` = u 6' v: The rules Dvar, Dfapp, or Dgen are applied depending on the structure of
u and v. Since a term is either a variable or a function application, all options are considered.

Lemma 4.8 (Rules preserve entailment conditions). For each rule

Eσ E C R
E′σ E C

′

if there is a ground substitution ρ such that FV(Eσ) ∩ FV(Eρ) = ∅ and E ∪Eσ ∪Eρ |= C, then
there is a ground substitution ρ′ with FV(E′σ) ∩ FV(E′ρ) = ∅ such that

(i) E ∪ Eσ ∪ Eρ |= C ′ and

(ii) E ∪ E′σ ∪ E′ρ |= C

Proof. The second condition holds trivially for all rules but Assign, since it is the only one that
modifies Eσ. We then first analyze Assign for both conditions, starting with the second one.
Let C = C1 ∧ x ' s. Therefore E′σ = Eσ ∪ {x ' s}. C ′ is the result of replacing x, and s if it
is also a variable, in C1 by its representative, which is either s or a variable from [x]E′

σ
. Let E′ρ

be Eρ but without the equality for the variable which disappeared from C1 in C ′. Thus, since
E∪Eσ ∪Eρ |= C and E′σ ∪E′ρ effectively have the same congruence closure as Eσ ∪Eρ, it follows
that E∪E′σ∪E′ρ |= C. For the first condition, since C ′ coincides with C1 but for the replacement
of the assigned variable, it also follows from the premise that E ∪ Eσ ∪ Eρ |= C ′.

We verify the first condition for the remaining rules by case analysis.

Case Split: Due to entailing a disjunction of the considered constraints guaranteeing the en-
tailment of at least one of the disjuncts.

Case Yield: Follows trivially from the properties of conjunction.

Case Uvar: By congruence. Since x occurs in f(ūn), E ∪ Eσ ∪ Eρ |= x ' f(ūn) implies that
there are terms t and f(t̄′n) in T(E) which are the representatives, in Eσ ∪Eρ, for x and f(ūn),

45

Chapter 4. Congruence closure with free variables

respectively, such that E |= t ' f(t̄n) and t occurs in f(t̄n) modulo E. Thus in C ′ there is one
disjunct such that

x ' t ∧ u1 ' t1 ∧ · · ·un ' tn ∧ C ′′

which is built according to the class [t]E and is trivially entailed by E, since E∪Eσ∪Eρ entailing
each of its conjuncts follows from the construction of the disjunct and from the premise.

Proceeding analogously the condition can be shown to also hold for the remaining branching
rules.

Theorem 4.9 (Completeness). Let σ be a solution for an E-ground (dis)unification problem
E |= Lσ. Then there exists a derivation tree starting on ∅ E L with at least one branch closed
with Yield such that σg ∈ Sols(Eσ) and E |= Lσ?g .

Proof. Theorem 4.2 ensures that there is an acyclic substitution σg corresponding to σ such that
ran(σg) ⊆ T(E ∪ L), σ?g is ground and E |= Lσ?g . It remains to be shown that CCFV can
produce such a substitution. By Lemma 4.7, for any equality literal in L, no matter its shape, a
given rule is applicable to assess its entailment. By Lemma 4.8, all rules in CCFV preserve the
entailment conditions according to ground substitutions, therefore, by induction on the structure
of derivation trees, if there is a solution for L, then there is a branch in the derivation tree starting
from ∅ E L whose leaf is Eσ E > and σg ∈ Sols(Eσ) is such that E |= Lσ?g .

Theorem 4.10 (Soundness). Whenever a branch is closed with Yield, every σg ∈ Sols(Eσ) is
such that E |= Lσ?g .

Proof. We show by induction on the structure of derivation trees that a resulting ground sub-
stitution σ from a branch closed with Yield is indeed a solution for the initial problem at the
root. The base case is that at the leaf any substitution σg ∈ Sols(Eσ) is ground and such
that E |= >σ∗g . Lemma 4.6 ensures that σ?g is ground and the entailment holds trivially. Our
induction hypothesis is that if the condition holds at the succedent E′σ E C ′ of a rule it holds
that E |= C ′σ, then it holds for premise Eσ E C that E |= Cσ. We proceed by case analysis,
for each rule.

Case Split: Follows by entailing a disjunct implying the entailment of the disjunction.

Case Assign: Let C = C1 ∪ {x ' s}. Again, C ′ is the result of replacing a variable in C1

according to the assignment x ' s being added to the current partial solution. Since σ stems
from a successful branch deriving from C ′, it maps x and s to a ground term congruent to the
representative they were replaced by in C1. Therefore, from E |= C ′σ it follows that E |= C1σ.
Moreover, trivially E |= {xσ ' sσ}. Thus E |= Cσ.

Case Uvar: From the premise and by the properties of disjunction, there is at least one disjunct
in C ′σ such that, for some [t] ∈ Ecc and f(t1, . . . , tn) ∈ [t],

E |= xσ ' tσ ∧ u1σ ' t1σ ∧ · · · ∧ unσ ' tnσ

46

4.2. Calculus

By congruence, E |= f(ūn)σ ' f(t̄n)σ holds. Since we have that E |= t ' f(t̄n), E |= C ′σ and
Cσ = C ′σ ∪ {x ' f(ūn)}σ, it follows that E |= Cσ.

Proceeding analogously the condition can be shown to also hold for the remaining branching
rules. Since the induction hypothesis is valid, the condition E |= (C ∧ Eσ)σ?g also holds at the
root, in which C is L and Eσ is the empty set. Thus E |= Lσ?g .

Corollary 4.11 (CCFV decides E-ground (dis)unification). Any derivation strategy based on
the CCFV calculus is a decision procedure for E-ground (dis)unification.

Even though CCFV always finds a solution for an E -ground (dis)unification problem if it
has solutions, it only provides the ground solutions σ∗ such that E |= Lσ∗, σ is acyclic and
ran(σ) ⊆ T(E ∪ L).

4.2.3 Instantiating with CCFV

We here show how to use CCFV for computing substitutions for the instantiation techniques
cast with E-ground (dis)unification, as described in Section 4.1.1. We also present how CCFV

facilitates certain extensions to these techniques.

Trigger based instantiation The restricted E-ground (dis)unification

E |= (u1 ' y1 ∧ · · · ∧ un ' yn)σ

for a given quantified formula in Q can be solved with CCFV by adding a side condition to
Assign that s must be a ground term and removing the side condition of Uvar. This will
lead to the application of Uvar in each ui ' yi. The desired instantiations are obtained by
considering the substitutions extracted from the solutions from branches closed with Yield,
ignoring the assignments for ȳn.

Discarding entailed instances Trigger based instantiation may produce instances which
are already entailed by the ground model. Such instances most probably will not contribute
to the solving, so they should be discarded. Checking this, however, is not straightforward
with processing techniques. CCFV, on the other hand, allows it by simply checking, given
an instantiation σ for a quantified formula ∀x̄n. ψ, whether there is a literal ` ∈ ψ such that
E ∪ Eσ |= `, with Eσ = {x ' xσ | x ∈ dom(σ)}. This can be checked straightforwardly by
determining whether Yield is applicable in a state Eσ E rep(Eσ, `).

Example 4.8. Let E ∪Q be such that E |= p(c, d) ' > and Q has a quantified formula ∀xy. ψ
containing a literal p(x, y). If an instantiation σ = {x 7→ c, y 7→ d} is derived for ∀xy. ψ, it can
be quickly determined that, since E |= p(x, y)σ ' >, this instantiation should be discarded.

47

Chapter 4. Congruence closure with free variables

Conflict based instantiation CCFV can be applied directly in the search for conflicting
instances for E ∪Q. The negation of each quantified formula in Q comprises a conjunction L of
equality literals for which a solution within the context E is searched for, starting on the initial
state ∅ E L. Differently from the algorithm given by Reynolds et al. [RTdM14], CCFV finds
all conflicting instantiations for a given quantified formula by being a decision procedure for the
corresponding E-ground (dis)unification problem E |= Lσ.

Propagating equalities As discussed in Section 3.2.2, even when the search for conflicting
instances fails it is still possible to propagate relevant equalities. Let us consider how to propagate
these equalities with CCFV. Given some ¬ψ = `1 ∧ · · · ∧ `n, let σ be a ground substitution such
that E |= `1σ ∧ · · · ∧ `k−1σ and all remaining literals `kσ, . . . , `nσ not entailed are ground
disequalities with (T(`kσ)∪ · · · ∪T(`nσ)) ⊆ T(E). The instantiation ∀x̄n. ψ → ψσ introduces a
disjunction of equalities constraining T(E). CCFV can generate such propagating substitutions
if the side conditions of Fail and Yield are relaxed w.r.t. ground disequalities whose terms
occur in T(E) and originally had variables: the former is not applied based on them and the
latter is.

Example 4.9. Consider the conjunctive set E = {f(a) ' t, t′ ' g(a)} and a quantified formula
∀x. f(x) 6' t ∨ f(x) ' g(x). When applying CCFV in the problem

E |= (f(x) ' t ∧ f(x) 6' g(x))σ

to entail the first literal a candidate solution Eσ = {x ' a} is produced. The second literal
would then be normalized to f(a) 6' g(a), which would lead to the application of Fail, since it
is not entailed by E. However, as it is a disequality whose terms are in T(E) and originally had
variables, instead the rule Yield is applied. The resulting substitution σ = {x 7→ a} leads to
propagating the equality f(a) ' g(a), which merges two classes previously different in Ecc.

MBQI CCFV can be applied directly in the search for conflicting instances for Etot ∪ Q.
However, it is not necessary to explicitly build Etot, which can be quite large. The search can
be performed on E and when a solution is not found, “definitions” for new terms can be added
lazily to Etot as they are required by CCFV for building potential solutions. Differently from
the model based approaches of Ge and de Moura [GdM09] and Reynolds et al. [RTG+13], which
allow integration of theories beyond equality, CCFV for now only handles the equational case.

4.3 A non-backtracking CCFV

The calculus in Table 4.1 is inherently backtracking because it considers one solution at a time.
This is the case since conjunctive constraints can only be solved by building solutions extending
a current one. In this section we present an alternative calculus for CCFV that searches for

48

4.3. A non-backtracking CCFV

solutions in a non-backtracking manner. Sets of solutions may be computed independently and
combined according to the dependency between the solved constraints. This way one is not
restricted to search only for solutions extending a fixed one.

This new calculus is similar to the previous one, but now a state is an AND-OR combination
of solving statements, denoted S. Each solving statement has the form Σ E C, in which Σ is
a set of conjunctive equalities representing partial solutions and C, as before, is an AND-OR
combination of the remaining constraints to entail. The calculus is shown in Table 4.2. The
symbols u, t and ∧, ∨ are used for writing combinations of solving statements and constraints,
respectively. Instead of a derivation tree, the new calculus operates on a single state that is
modified in a top-down manner by each rule application. From an initial state {>} E L, a
fair application of the rules eventually derives either ∅ E ⊥ or Σ E >. In the latter case all
solutions for the E-ground (dis)unification problem E |= Lσ are contained in Σ. The former
case indicates that the problem has no solutions.

The main differences in the calculi come from the structural rules. The branching behave
mostly as before. Assign changes only so that now it updates not a single solution but a set
of them, keeping the remaining constraints normalised according to all of them. While before
disjunctions in the right hand side were abstracted with branching, now the rules explicitly
operate on them. Moreover, conjunctions may also be split. The rules Split∧ and Split∨ split
the search for solutions into simultaneous or orthogonal components, respectively, as represented
by the combination of solving statements with u or t. On the other hand, Meet and Join

combine components based on their interdependency. Orthogonal components can be combined
only after they have been solved. The rules from Table 4.1 that simplified conjunctive constraints
based on entailment from E are extended for simplifying disjunctive constraints. Therefore
Fail∧ and Yield∧ coincide with the previous calculus, while Fail∨ and Yield∨ apply the dual
simplifications for disjunctions. These extended structural rules allow each part of the problem to
be solved as independently as desired and the resulting solutions to be later properly combined.

Combining orthogonal solutions, done by Join, is straightforward. It suffices to merge the
sets of complete solutions and recover the disjunction in the constraints. The case of simultane-
ous solutions, however, considers arbitrary constraints and partial solutions and requires closer
attention. From two solving statements, Meet generates all possible pairwise combinations of
solutions from their respective solution sets. To ensure compatibility, one of the two solutions
being combined is chosen and both the remaining constraints and the other solution are nor-
malized according to it. This way if two solutions are not compatible, at least one literal that
cannot be entailed will be in the constraints of the generated state. Since the constraints are
conjunctive, the faulty statement will eventually be discarded. The normalisation also keeps the
invariant that variables which are not their own representatives do not appear in the right hand
side of the solving statement.

49

Chapter 4. Congruence closure with free variables

S u Σ E x ' s ∧ C
Assign if x 6∈ FV(s)

S u {Eσ ∧ x ' s | Eσ ∈ Σ} E rep(x ' s, C)

S u Σ E x ' f(ūn) ∧ C
Uvar if x ∈ FV(f(ūn))

S u Σ E
∨

[t]∈Ecc, f(t̄n)∈[t]
(x ' t ∧ u1 ' t1 ∧ · · · ∧ un ' tn ∧ C)

S u Σ E f(ūn) ' f(s̄n) ∧ C
Ucomp

S u Σ E (u1 ' s1 ∧ · · · ∧ un ' sn ∧ C) ∨∨
[t]∈Ecc,
f(t̄n)∈[t], f(t̄′n)∈[t]

(
u1 ' t1 ∧ · · · ∧ un ' tn ∧
s1 ' t′1 ∧ · · · ∧ sn ' t′n ∧ C

)
S u Σ E f(ūn) ' g(s̄m) ∧ C

Ugen

S u Σ E
∨

[t]∈Ecc,
f(t̄n)∈[t], g(t̄′m)∈[t]

(
u1 ' t1 ∧ · · · ∧ un ' tn ∧
s1 ' t′1 ∧ · · · ∧ sm ' t′m ∧ C

) if f 6= g

S u Σ E x 6' y ∧ C
Dvar

S u Σ E
∨

[t], [t′]∈Ecc, E|=t6't′
(x ' t ∧ y ' t′ ∧ C)

S u Σ E x 6' f(s̄n) ∧ C
Dfapp

S u Σ E
∨

[t], [t′]∈Ecc,
E|=t 6't′, f(t̄′n)∈[t′]

(x ' t ∧ s1 ' t′1 ∧ · · · ∧ sn ' t′n ∧ C)

S u Σ E f(ūn) 6' g(s̄m) ∧ C
Dgen

S u Σ E
∨

[t], [t′]∈Ecc, E|=t6't′,
f(t̄n)∈[t], g(t̄′m)∈[t′]

(
u1 ' t1 ∧ · · · ∧ un ' tn ∧
s1 ' t′1 ∧ · · · ∧ sm ' t′m ∧ C

)
S u Σ E C1 ∧ C2

Split∧
S u (Σ E C1) u (Σ E C2)

S u Σ E C1 ∨ C2
Split∨

S u (Σ E C1) t (Σ E C2)

S u (Σ E C u Σ′ E C ′)
Meet

S u
(⊔

Eσ∈Σ, E′
σ∈Σ′

(
{Eσ} E C ∧ rep(Eσ, E

′
σ) ∧ rep(Eσ, C

′)
))

S u (Σ E c1 t Σ′ E c2)
Join with c1, c2 ∈ {⊥, >}

S u Σ ∪ Σ′ E c1 ∨ c2

S u Σ E ` ∧ C
Fail∧ if ` is ground and E 6|= `

S u ∅ E ⊥
S u Σ E ` ∧ C

Yield∧ if E |= `
S u Σ E C

S u Σ E ` ∨ C
Fail∨ if ` is ground and E 6|= `

S u Σ E C

S u Σ E ` ∨ C
Yield∨ if E |= `

S u Σ E >

Table 4.2: Non-backtracking CCFV calculus. E is fixed from a problem E |= Lσ.

50

4.3. A non-backtracking CCFV

Example 4.10. Consider the application of Meet on the state

{{x ' f(y)}} E g(z) ' t u {{x ' y, z ' t}} E >

Since both sets of solutions are singletons, there is only one case to consider. Let {x ' f(y)}
be the solution chosen for the normalisation. The representatives of the variable x, y, z in it are
f(y), y, and z, respectively. Thus the resulting state is

{{x ' f(y)}} E g(z) ' t ∧ f(y) ' y ∧ z ' t ∧ >

with the normalisation of the solution and the constraint from the combined state. This shows
that the two solutions are compatible only if f(y) ' y can be solved, since x was assigned in
both solutions.

4.3.1 Strategy

A simple derivation strategy for this new CCFV calculus is to decompose the entailment prob-
lems until they depend only on variable assignments and ground reasoning, and then combine the
found solutions accordingly. Given an initial state {>} E L, branching rules and splitting rules
are applied exhaustively, until all solving statements have the form {>} E A ∧ C, in which A
and C are conjunctive sets of variable equations and of ground constraints, respectively. By ap-
plying a series of Assign and Yield∧ or Fail∧ rules, each solving statement will become either
Σ E >, if the assignments in A are compatible and E entails C, or ∅ E ⊥, otherwise. The
resulting solving statements are successively combined and simplified with series of applications
of Join and Meet, and both cases of Yield and Fail. One obtains either a state ∅ E ⊥, if
the solutions are not compatible, or a state Σ′ E >, otherwise. In the latter case all solutions
in Σ′ are solutions for the E-ground (dis)unification problem.

Example 4.11. Consider again E, L, and Ecc as in Example 4.7:

E = {f(a) ' f(b), h(a) ' h(c), g(b) 6' h(c)}
L = {h(x1) ' h(c), h(x2) 6' g(x3), f(x1) ' f(x3), x4 ' g(x5)}

Ecc = {{a}, {b}, {c}, {f(a), f(b)}, {h(a), h(c)}, {g(b)}}

The derivation on the respective E-ground (dis)unification problem, with the above strategy, is
shown below. As before, the solving of x4 ' g(x5) is kept implicit to simplify the presentation.
Steps with double lines represent numerous applications of the indicated rules, e.g.:

{>} E f(x1) ' f(x3) ∧ h(x2) 6' g(x3) ∧ h(x1) ' h(c)
Split∗∧

{>} E f(x1) ' f(x3) u {>} E h(x2) 6' g(x3) u {>} E h(x1) ' h(c)

We present the derivation on each solving statement independently. The statement for the first
constraint, {>} E f(x1) ' f(x3), is reduced in the following manner:

51

Chapter 4. Congruence closure with free variables

{>} E f(x1) ' f(x3)
Ucomp

{>} E x1 ' x3 ∨ (x1 ' a ∧ x3 ' b) ∨ (x1 ' b ∧ x3 ' a)
Split∗∨

{>} E x1 ' x3 t {>} E x1 ' a ∧ x3 ' b t {>} E x1 ' b ∧ x3 ' a
Assign∗

{{x1 ' x3}} E > t {{x1 ' a, x3 ' b}} E > t {{x1 ' b, x3 ' a}} E >
Join∗, Yield∨

{{x1 ' x3}, {x1 ' a, x3 ' b}, {x1 ' b, x3 ' a}} E >

while {>} E h(x2) 6' g(x3) is reduced as

{>} E h(x2) 6' g(x3)
Dgen{>} E (x2 ' c ∧ x3 ' b) ∨ (x2 ' a ∧ x3 ' b)

Split∨{>} E x2 ' c ∧ x3 ' b t {>} E x2 ' a ∧ x3 ' b
Assign∗

{{x2 ' c, x3 ' b}} E > t {{x2 ' a, x3 ' b}} E >
Join∗

{{x2 ' c, x3 ' b}, {x2 ' a, x3 ' b}} E >

and {>} E h(x1) ' h(c) as

{>} E h(x1) ' h(c)
Ucomp

{>} E x1 ' c ∨ x1 ' a
Split∨

{>} E x1 ' c t {>} E x1 ' a
Assign∗

{{x1 ' c}} E > t {x1 ' a} E >
Join

{{x1 ' c}, {x1 ' a}} E >

The global derivation is resumed below with the results from the above ones. The remaining
steps to perform in the strategy are to combine the interdependent solutions and simplify the
resulting constraints. To improve the presentation, let

Σ1 = {{x1 ' x3}, {x1 ' a, x3 ' b}, {x1 ' b, x3 ' a}}
Σ2 = {{x2 ' c, x3 ' b}, {x2 ' a, x3 ' b}}
Σ3 = {{x1 ' c}, {x1 ' a}}

Moreover, the presentations of the combinations are collapsed. The results from Meet lead
to several solving statements to be combined with Join, besides the built constraints being
amenable to assignments and conjunctive and disjunctive simplifications. Thus only the final
results are depicted for the combinations of Σ2 with Σ3 and then of its result with Σ1.

52

4.3. A non-backtracking CCFV

{>} E f(x1) ' f(x3) ∧ h(x2) 6' g(x3) ∧ h(x1) ' h(c)
...

Σ1 E > u Σ2 E > u Σ3 E >

Σ1 E > u

{x1 ' c, x2 ' c, x3 ' b},
{x1 ' c, x2 ' a, x3 ' b},
{x1 ' a, x2 ' c, x3 ' b},
{x1 ' a, x2 ' a, x3 ' b}

 E >{
{x1 ' a, x2 ' c, x3 ' b},
{x1 ' a, x2 ' a, x3 ' b}

}
E >

which has the same solutions as in Example 4.7.

This strategy can be optimised in numerous ways, such as applying Fail∧ as soon as possible
and then “propagating” the failure through other statements with Meet. Similarly, applying
Meet as soon as a small set of solutions is obtained, which would then limit the number of
possibilities to search in the interdependent statements, is another point of improvement. The
main advantages of this calculus are in providing more flexibility for applying different search
strategies while solving E-ground (dis)unification. Indeed it can emulate the previous calculus
with a strategy that never applies the rule Split∧, and therefore also not Meet. This ensures
that each branch is solved independently and has at most one solution. The last steps in the
solving would be to apply a series of Join to gather all found solutions and close the derivation
with series of Yield∨ or Fail∨ applications.

53

Chapter 5

Implementation

CCFV has been implemented in the veriT [BdODF09] and CVC4 [BCD+11] SMT solvers. We
here describe the specifics of the implementation in veriT. As is common in CDCL(T) based
solvers, an E -graph data structure is kept internally to represent the set of signature classes Ecc

and efficiently check ground entailment modulo the theory of equality. This data structure is
generated by the congruence closure decision procedure for ground equational first-order logic.
The E -graph is the basis for the indexing techniques described below. They are paramount for a
practical procedure, allowing fast retrieval of candidates when searching for solutions for a given
E-ground (dis)unification problem.

An experimental evaluation measures the impact of optimizations and instantiation tech-
niques based on CCFV in veriT and CVC4. Comparisons are shown with previous versions and
with the instantiation based SMT solver Z3 [dMB08b].

Limitations Efficient implementations of the congruence closure decision procedure are cur-
rently guaranteed to be closed under entailment only for congruent terms, not for disequal ones.
E.g. g(f(a), h(b)) 6' g(f(b), h(a)) ∈ E does not lead to the addition of a 6' b to the data struc-
ture. A complete implementation of CCFV requires the derivation of all entailed disequalities
from E. Therefore for now we implement incomplete versions of the rules Dvar, Dfapp, and
Dgen. However, as our experiments show, they are still effective in practice. Another limitation,
but less relevant, is that the E -graph allows checking in constant time for equality only for terms
known by the data structure. These are generally the ground terms appearing in the original for-
mula. Checking whether e.g. two ground function applications f(t1, . . . , tn), f(t′1, . . . , t

′
n), that

do not occur in the E-graph but may appear when analyzing L, are congruent requires checking
whether all arguments, position by position, are congruent. Therefore the operation is worst-case
linear in the size of the terms. As before, this does impact significantly the performance of the
implementation.

54

5.1. Indexing

5.1 Indexing

Performing E-ground (dis)unification requires dealing with many terms, which makes the use of
efficient indexing techniques for fast retrieval of candidates paramount for efficiency. Besides the
indexing, we also discuss how the ground model E is minimised to reduce the number of terms
that need to be considered. All operations below rely on terms being represented internally as
directed acyclic graphs (DAGs) with maximal sharing, also known as “hash-consing”, of common
expressions. Therefore terms can be traversed as DAGs and syntactic equality between terms
can be checked in constant time.

Top symbol indexing of Ecc The set of signature classes Ecc, as defined in Chapter 4, is
indexed by top symbols. The index consists of entries of the form

f →

f(t11, . . . , t1n)

...
f(tm1, . . . , tmn)

in which f is a function symbol of arity n and each function application f(ti1, . . . , tin) is a term
occurring in Ecc.

We define below several operations based on this index and on the E-graph that are used in
the E-ground (dis)unification solving.4 Let f be a function symbol and s a term:

– class(s): yields the set of terms in the signature class of s, i.e. all terms occurring in [s]

from Ecc. These results can be directly retrieved from the E-graph in constant time.

– find(s): yields the representative of class(s), i.e. a distinguished term from the signature
class of s in Ecc. Also directly retrievable from the E-graph in constant time.

This operation is what allows the efficient checking of whether two ground terms t1 and
t2 are congruent. If they both occur in the E-graph, it suffices to check whether it holds
that find(t1) = find(t2), i.e. whether the DAG representation of both representatives is
syntactically equal. Otherwise it is necessary to check if the terms have the same top
symbol and if arguments of matching position are congruent.

– reps(f): yields all representatives whose respective signature class in Ecc contains f -
applications. The representatives are collected from the entries in the index for f . This
operation is linear on the size of the index result for f .

– apps(f, s): yields all f -applications in class(s). They are retrieved by traversing the set of
terms in class(s) and collecting those whose top symbol is f . This operation is linear on
the size of class(s).

4This presentation is inspired by the presentation of the indexing techniques used for E -matching by de Moura
and Bjørner [dMB07].

55

Chapter 5. Implementation

– apps(f): yields all f -applications occurring in Ecc, which amounts to collecting all terms
indexed for f . This operation is constant time, since f is mapped in the index to what
corresponds to apps(f).

– diseqs(s): yields all representatives of terms in Ecc disequal to s, according to E. This
operation is implemented in constant time by associating, to each signature class, a previ-
ously computed ordered list of the representatives of classes containing terms disequal to
it.

This way it is possible to check if two ground terms t1 and t2 are disequal by assessing
whether find(t1) occurs in diseqs(t2), or vice-versa, depending on which one is smaller. By
keeping an ordered list, the occurrence check can be done on the logarithm of the list’s
size.

To enumerate all terms in Ecc disequal to s it suffices to collect⋃
t∈diseqs(s)

class(t)

which can be done in linear time on the size of diseqs(s).

To optimise these operations we use approximated sets, as in the Simplify [DNS05] and
Z3 [dMB07] systems. They behave much in the same way as sets, except that membership and
overlap tests may return false positives. Each signature class is associated with an approximated
set containing the functions symbols which have applications in that class. This technique allows
checking if a symbol has applications in a signature class in constant time for a subset of the
total set of symbols. If e.g. one is querying with apps(f, s) for all f -applications in [s], this result
cannot be empty if f is in the approximated set of [s]. These approximated sets are implemented
with bit masks: each symbol is assigned an arbitrary bit, and the mask for the class is a vector
of bits. The set positions are those for which the respective symbol has applications in the class.

Model Minimisation For efficiency reasons, the E-graph in veriT, as in other CDCL(T)
solvers, contains not only the terms occurring in the current E but all ground terms from the
original input formula. This means that a top symbol index built directly from the E-graph will
generally contain more terms than actually appear in E. When using operations such as apps(f)

more terms will be considered, and therefore generally more instances generated, than it would
be the case if one were to consider only the terms in E. This has the side effect of potentially
worsening the already explosive nature of trigger based instantiation.

To tackle this issue we have two alternative ways of building the top symbol indexing in
veriT. The first way considers the E-graph, as explained above. The second one collects terms
directly from E by traversing the currently asserted literals. As with the E-graph, only a single
term is kept per signature. Dealing directly with the ground model also has the advantage of
allowing its minimisation. Since the SAT solver generally asserts more literals than necessary, the

56

5.2. Finding solutions

propositional abstraction of E∪Q generally can be pruned while still propositionally entailing the
original formula. This minimisation is done by computing a prime implicant, a minimal partial
assignment. Its computation can be performed in linear time (see e.g. Déharbe et al. [DFLM13]).
By having a smaller E one reduces the search space to consider when solving an E-ground
(dis)unification problem. Another possibility is to minimise Ecc, i.e. complementing E with
equalities between its terms until the number of signature classes is as small as possible. This
minimisation problem, however, is NP-complete [RTGK13], so we do not attempt it. Moreover,
it is not necessary for the effectiveness of the instantiation techniques we implement.

We also clean the CNF overhead: we remove part of the propositional variables introduced
by the non-equivalency preserving CNF transformation the formula undergoes. They have the
side effect that the prime implicant for the CNF is not necessarily prime for the original formula.
We apply the same process as de Moura and Bjørner [dMB07] for Relevancy.

Example 5.1 ([dMB07]). To illustrate the issue, consider a clause `1∨(`2∧`3). Its clausification
using a Tseitin [Tse83] style algorithm yields the set of clauses

{`1, `aux}, {`aux, ¬`2, ¬`3}, {`2, ¬`aux}, {`3, ¬`aux}

Now, suppose that `1 is assigned true. In this case, `2 and `3 are clearly irrelevant and truth
assignments to `2 and `3 need not be used, but this fact is occulted by the Tseitin encoding,
which creates a set of clauses.

To determine which literals are relevant one can traverse the original formula using the
Boolean valuations derived from the prime implicant. Then only the literals which are required
to make the formula true are marked as relevant and kept in the propositional assignment from
which E ∪Q is derived.

5.2 Finding solutions

We present in Figure 5.1 an abstract algorithm to solve E-ground (dis)unification. It implements
the backtracking CCFV calculus described in Section 4.2 with the strategy from Section 4.2.1.
The same notation conventions for ground and non-ground terms from Section 4 are used. The
algorithm takes as input a partial solution and a conjunctive set of constraints to be entailed.
It produces the set of all complete solutions for the input constraints which extend the input
solution. Of course, this set may be empty if there is no such extension. Thus, an initial call
CCFV(>, L) yields the set of solutions {E1

σ, . . . , E
n
σ}, from which all ground solutions σ∗, such

that σ is acyclic and ran(σ∗) ⊆ T(E ∪ L), are derivable. From now on we ambiguously refer
to the algorithm as CCFV, clarifying when necessary whether we mean the algorithm or the
calculus.

The set of constraints on which CCFV operates are kept as a stack of pairs of terms to
be entailed equal of disequal. The most simple implementation of sel is to merely pop the

57

Chapter 5. Implementation

function CCFV(Eσ, C) is
if C = ∅ then // All constraints were discharged, return solution
return {Eσ}

c← sel(C); C ← C \ {c}; Sols← ∅ // Select constraint
match c with
s ' s : return CCFV(Eσ, C) // Syntactic equality
t1 6' t2 : // Ground disequality
if t1 6∈ diseqs(t2) then return ∅
return CCFV(Eσ, C)

t1 ' t2 : // Ground equality
if t1, t2 ∈ T(E) then
if find(t1) = find(t2) then return CCFV(Eσ, C)

else if t1 = f(s̄n) and t2 = f(r̄n) then
return CCFV(Eσ, C ∪ {s1 ' r1, . . . , sn ' rn})

return ∅
x ' s :
if x 6∈ FV(s) then // Assignment
E′σ ← Eσ ∪ {x ' s}; C ← rep(C)
return CCFV(E′σ, C)

else // s is a non-ground function application
let s = f(ūn) in
for t ∈ reps(f) do // Uvar
Sols← Sols ∪CCFV(Eσ, C ∪ {f(ūn) ' t, x ' t})

return Sols
f(ūn) ' t : // E -matching
for f(t̄n) ∈ apps(f, t) do
Sols← Sols ∪CCFV(Eσ, C ∪ {u1 ' t1, . . . , un ' tn})

return Sols
f(ūn) ' g(ū′n) :
if f = g then // E -unify arguments
Sols← Sols ∪CCFV(Eσ, C ∪ {u1 ' u′1, . . . , un ' u′n})

for t ∈ reps(f) do // E -matching into same class
Sols← Sols ∪CCFV(Eσ, C ∪ {f(ūn) ' t, g(ū′n) ' t})

return Sols
x 6' t :
for t′ ∈ diseqs(t) do // Assignment into a disequal term
Sols← Sols ∪CCFV(Eσ, C ∪ {x ' t′})

return Sols
f(ūn) 6' t : // E -matching into a disequal term
for t′ ∈ diseqs(t) do
Sols← Sols ∪CCFV(Eσ, C ∪ {f(ūn) ' t′})

return Sols
x 6' f(ūn) : // Dfapp
for t ∈ reps(f) do
Sols← Sols ∪CCFV(Eσ, C ∪ {f(ūn) ' t, x 6' t})

return Sols
f(ūn) 6' g(ū′n) : // E -matching into disequal terms
for t ∈ reps(f) do
Sols← Sols ∪CCFV(Eσ, C ∪ {f(ūn) ' t, g(ū′n) 6' t})

return Sols
x 6' y : // Dvar
for each signature t in Ecc do
for t′ ∈ diseqs(t) do
Sols← Sols ∪CCFV(Eσ, C ∪ {x ' t, y ' t′})

return Sols

Figure 5.1: Backtracking CCFV algorithm

58

5.2. Finding solutions

constraint on the top of the stack. The partial solutions generated from the variable assignments
are represented as fixed-sized arrays, depending on how many free variables are on L, of “variable
valuations”. Each valuation consists of:

– a field for the respective variable;

– a flag to whether that variable is the representative of its congruence class;

– a field for, if the variable is a representative, the ground term or non-ground function
application it is equal to; otherwise a pointer to the variable it is equal to, the default
being itself.

These solutions are manipulated with a UNION-FIND algorithm with path-compression. The
union operation is made modulo the congruence closure on the ground terms and the current
assignments to the variables in that solution. The operation keeps the invariant that the solution
is a consistent set of equalities. CCFV keeps a single global candidate solution that is updated by
adding or removing assignments, according to how the search proceeds. An specialised E-graph
is used for the terms in L, such that constraints are considered modulo the current solution. The
E-graph is updated as the current solution changes, merging classes or backtracking these merges
as assignments are added or removed from the solution. When an actual solution is found, i.e.
when all constraints have been solved for a given candidate solution, a copy of the found solution
is stored in a global accumulator of solutions.

CCFV performs a depth-first search for solutions. Given a partial solution and a conjunctive
set of constraints, it selects a given constraint; determines how to handle it according to its
structure; augments the current solution, and thus also the remaining constraints, if necessary,
or try all possibilities for entailing the respective constraint according to the indexing of Ecc;
and then proceeds to solve the remaining constraints. Each loop through different unification
possibilities effectively introduces “break-points” in the search. The remaining constraints are
augmented and the search proceeds, but after that possibility is explored the executing will return
to the break-point. All assignments that may have been added to the current solution will have
been removed, all modifications to the E-graph backtracked, and the remaining constraints to
consider will be as they were before the new ones had been added. This can be seen as a “branch”
in the search being closed and a new one being picked to be explored. The solutions obtained from
closed branches are stored in the solution accumulator. When all branches have been explored,
i.e. all cases in the loop have been considered, the execution returns to the previous break-point,
backtracking the solution and the E-graph accordingly, and then proceeds, until they have all
been exhausted and the execution halts.

To optimise the search, the algorithm applies more case distinctions than the rules in Ta-
ble 4.1, such as differentiating between E -matching and E -unification. It also makes use of the
operations on the top symbol index and E-graph to reduce the number of terms that need to be
considered in the search for solutions.

59

Chapter 5. Implementation

Example 5.2. Consider again the conjunctive sets E and L as in Example 4.1, i.e.

E = {f(a) ' f(b), h(a) ' h(c), g(b) 6' h(c)}
L = {h(x1) ' h(c), h(x2) 6' g(x3), f(x1) ' f(x3), x4 ' g(x5)}

with the set of signature classes of E being

Ecc = {{a}, {b}, {c}, {f(a), f(b)}, {h(a), h(c)}, {g(b)}}

We assume that all the indexing operations from Section 5.1 are available. The execution
of the CCFV algorithm would start with CCFV(>, L). To ease the presentation, let us follow
the selection order used in Example 4.7. First the literal h(x1) ' h(c) is selected from the set
of constraints. Its pattern matching leads to an E -matching scenario, in which the arguments of
h(x1) will be E -matched with the arguments of each term in apps(h, h(c)), i.e. each h-applications
in class(h(c)). Let h(a) be the first of these terms. As a consequence, the following call will be
with CCFV(>, (L \ {h(x1) ' h(c)}) ∪ {x1 ' a}). By proceeding analogously and following
the same selection criteria from Example 4.7, the CCFV algorithm will not only find the same
solutions (which, is worth noting, would all be found, independently from the selection strategy)
but create “break-points”, i.e. recursive calls to CCFV from within loops, in the same points
that the derivation tree branches, in the same order.

Ordering constraints The CCFV algorithm, as the calculus it implements, allows any arbi-
trary order for selecting literals in constraints. A possible selection heuristic is to order constraints
according to their “branching potential”: select first the constraints whose entailment check re-
quires less branching. This number depends on the structure of the terms in the constraint literal
and on Ecc, and can be approximated with different levels of precision (number of branches gen-
erated after applying one rule on the literal, number of branches after two rules, on the literal
and in the results, etc.). The trade-off between classifying constraints and the gain from such
classification should be taken into account. The first literals to be selected would be those whose
entailment check does not require branching, i.e. equalities between syntactically equal terms,
ground equalities between terms known by the E-graph or whose function symbols are different.

Discarding unsuitable branches Matching a term f(ūn) with a ground term f(t̄n) fails
unless all their ground arguments of matching position are congruent. Therefore, after an as-
signment and the subsequent update of the E-graph, if an argument of a term f(ūn) occurring
in one of the remaining constraints becomes ground, it can be checked whether there is a ground
term f(t̄n) ∈ T(E) such that, for every ground argument ui, E |= ui ' ti, i.e. find(ui) = find(ti).
If no such term exists and f(ūn) is not in a literal compatible with a Ucomp scenario, the whole
“branch” can be eagerly discarded.

Example 5.3. Considering the CCFV calculus, in a state Eσ E x ' t∧f(g(x), y) ' h(z)∧C,

60

5.2. Finding solutions

assume that Assign is applied. Then the term f(g(x), y) becomes f(g(t), y) in the branch.
A necessary condition for the literal f(g(t), y) ' h(z) to be entailed is that there exists some
f(t1, t2) ∈ T(E) such that E |= g(t) ' t1.

To efficiently implement this technique it is necessary to query with a function symbol and
pairs of ground terms and positions whether there is any term in Ecc with the same top symbol
and whose arguments are congruent with the given ground terms in the respective positions.
The index operation would have the form apps(f, 〈w1, . . . , wn〉), in which each wi is either a
ground term or a nullary symbol ∗, and yield all terms f(t1, . . . , tn) in Ecc such that, at each
position i ∈ {1..n} in which wi 6= ∗, E |= ti ' wi. In the example above, the query would be
whether apps(f, 〈g(t), ∗〉) is empty. The operation apps(f, 〈w1, . . . , wn〉) can be implemented
by building a forest in which each tree has as root a function symbol, each edge is annotated
with a term, and whose leafs are the applications of that symbol in Ecc whose arguments are
the annotations in the edges leading to that leaf, in the respective order. Alternatively the
hash table kept internally for efficiently manipulating the E-graph could be used. This would
require adding 2n entries for each function symbol into the table, in which n is the arity of the
respective function symbol. Therefore it is necessary to carefully analyse which function symbols
can benefit from this check.

5.2.1 Breadth-first CCFV

The above algorithm implements a depth-first search for solutions, following the backtracking
CCFV calculus. Here we present an abstract algorithm in Figure 5.2. that implements the
non-backtracking CCFV calculus described in Section 4.3 with the strategy from Section 4.3.1.
The algorithm, henceforth CCFV-breadth, takes as input a conjunctive set of constraints to
be entailed. It produces the set of all solutions for the input constraints. Of course, as before,
this set may be empty if there are no solutions. CCFV-breadth uses the same data structures
as its depth-first counterpart. However, it explicitly manipulates the different partial solutions
produced during the solving. Moreover, since in this strategy the variable assignments only occur
when the remaining constraints are ground, there is no need to have an E-graph for the terms
in L to be updated according to assignments.

The algorithm also has break-points with recursive calls from within loops of independent
possibilities. However, the recursive call contains only “local constraints”, generated from the
analysis of the currently selected constraint. After the call is finished, the results are combined
with those from previously selected constraints. This way, constraints are solved independently
and the found solutions are combined according to how these constraints have been generated.
The crucial operations in CCFV-breadth are the combination operations, i.e. the implemen-
tations of Join and Meet. They are represented in the algorithm by the symbols u and t,
respectively, and are performed directly on sets of solutions. For now we have naïve implementa-
tions of these combinations. The data structure we use for representing solutions is not optimised

61

Chapter 5. Implementation

function CCFV(C) is
Sols← {>}
while C 6= ∅ and Sols 6= ∅ do // Select constraint
c← sel(C); C ← C \ {c}; c-sols← {>}
match c with
t1 6' t2 : // Ground disequality
if t1 6∈ diseqs(t2) then c-sols← ∅

t1 ' t2 : // Ground equality
if t1, t2 ∈ T(E) then
if find(t1) 6= find(t2) then c-sols← ∅

else if t1 = f(s̄n) and t2 = f(r̄n) then
c-sols← CCFV({s1 ' r1, . . . , sn ' rn})

else
c-sols← ∅

x ' s :
if x 6∈ FV(s) then // Assignment

c-sols← {x ' s}
else // s is a non-ground function application
let s = f(ūn) in
for t ∈ reps(f) do // Uvar

c-sols← c-sols tCCFV({f(ūn) ' t, x ' t})
f(ūn) ' t : // E -matching
for f(t̄n) ∈ apps(f, t) do

c-sols← c-sols tCCFV({u1 ' t1, . . . , un ' tn})
f(ūn) ' g(ū′n) :
if f = g then // E -unify arguments

c-sols← c-sols tCCFV({u1 ' u′1, . . . , un ' u′n})
for t ∈ reps(f) do // E -matching into same class

c-sols← c-sols tCCFV({f(ūn) ' t, g(ū′n) ' t})
x 6' t :
for t′ ∈ diseqs(t) do // Assignment into a disequal term

c-sols← c-sols tCCFV({x ' t′})
f(ūn) 6' t : // E -matching into a disequal term
for t′ ∈ diseqs(t) do

c-sols← c-sols tCCFV({f(ūn) ' t′})
x 6' f(ūn) : // Dfapp
for t ∈ reps(f) do

c-sols← c-sols tCCFV({f(ūn) ' t, x 6' t})
f(ūn) 6' g(ū′n) : // E -matching into disequal terms
for t ∈ reps(f) do

c-sols← c-sols tCCFV({f(ūn) ' t, g(ū′n) 6' t})
x 6' y : // Dvar
for each signature t in Ecc do
for t′ ∈ diseqs(t) do

c-sols← c-sols tCCFV({x ' t, y ' t′})
Sols← Sols u c-sols // Merge solutions from constraint

return Sols // Yield found solutions

Figure 5.2: Breadth-first CCFV algorithm

62

5.2. Finding solutions

for it. Moskal et al. [MŁK08] have a somewhat similar approach for their E -matching algorithm
in which sets of partial solutions need to be combined. By representing these sets as ordered
trees they are able to efficiently implement combination operations. We would need to extend
such data structures for our more complex solution representations, since we may have variables
associated with other variables or non-ground terms, rather than only with ground terms.

Example 5.4. Consider again E, L and Ecc as in Example 5.2 and assume that all the indexing
operations from Section 5.1 are available. The execution of the CCFV-breadth algorithm
would start with CCFV(L). Let h(x1) ' h(c) be the first constraint considered in the outer
while loop. The possibilities to solve h(x1) ' h(c) are enumerated in the E -matching case. This
constraint is solved independently and the obtained orthogonal solutions are

c-sols = {{x1 ' a}, {x1 ' c}}

Let the selection function next consider the constraint h(x2) 6' g(x3). Independently solving this
constraint yields

c-sols = {{x2 ' c, x3 ' b}, {x2 ' a, x3 ' b}}

These solutions are then merged with the solutions from the previous constraint, forming the
global set of solution

Sols = {{x1 ' a}, {x1 ' c}} u {{x2 ' c, x3 ' b}, {x2 ' a, x3 ' b}}

=

{x1 ' c, x2 ' c, x3 ' b},
{x1 ' c, x2 ' a, x3 ' b},
{x1 ' a, x2 ' c, x3 ' b},
{x1 ' a, x2 ' a, x3 ' b}

By proceeding analogously the CCFV-breadth algorithm will find the same solutions as in
Example 4.11 pretty much in the same way.

Memoization Quite often CCFV-breadth needs to look for solutions for the same E-ground
(dis)unification problem. To avoid duplication of work, we store the result of solving constraints.
Thus whenever that constraint is met again the respective solutions may be directly retrieved
from the memory instead of recomputed. For now we have only a coarse index for constraints,
but the technique is nevertheless effective in making CCFV-breadth faster.

A more ambitious application of memoization is to keep the results of solving constraints
across different calls to the instantiation module. This would allow updating the stored results
according to how the candidate assignment E ∪ Q changed, as the theory solvers do in the
CDCL(T) framework. This is a possibility for having an incremental CCFV algorithm, however
its viability has not been tested in a practical implementation.

63

Chapter 5. Implementation

5.2.2 Applying instantiation techniques

We here describe how to implement trigger and conflict based instantiation on top of CCFV.
We leave the implementation of model based instantiation, whose theoretical suitability we have
outlined in the previous chapter, for future work. In veriT we have also not yet implemented
the functionality to discard instances generated from triggers that are already entailed nor the
eventual propagation of equalities as a byproduct of failed search for conflicting instances.

Trigger based instantiation We follow the guidelines from Leino and Pit-Claudel [LP16]
outlined in Section 3.2.1 for selecting triggers. For a given quantified formula with a trigger
T = {u1, . . . , un}, solving the E-ground (dis)unification

E |= (u1 ' y1 ∧ · · · ∧ un ' yn)σ

with the restriction that all yi must be grounded, provides all the desired trigger instantiations.
Instead of changing the CCFV algorithm to perform the restricted search, we use an outer loop
that directly builds the E-ground (dis)unification problems in which ȳn have been grounded.
The terms enumerated for grounding ȳn are retrieved from apps(f). CCFV can then be applied
straightforwardly to collect the solutions. All found solutions are used for building instantiation
lemmas.

Conflict based instantiation To apply conflict based instantiation it suffices to have an
outer loop that produces the conjunctive negation of a quantified formula’s body, which compose
a set of constraints to be directly solved by CCFV. One point to consider is which instances
to generate from the found solutions to the E-ground (dis)unification problem. One conflicting
instance is sufficient to rule out the current assignment E∪Q, and this is indeed the strategy used
in CVC4, the first SMT solver to use conflict based instantiation. In veriT, however, instantiating
the quantified formulas with all found conflicting substitutions has been, so far, more effective
than generating the minimal amount of conflicting instances.

5.3 Experiments

Here we evaluate the impact of optimizations and instantiation techniques based on CCFV. We
make comparisons with previous versions of the SMT solvers veriT and CVC4, as well as with the
state-of-the-art instantiation based solver Z3 [dMB08b]. Different configurations are identified
in this section according to which techniques and algorithms they have activated:

t : trigger instantiation through CCFV (see “Trigger based instantiation” in Section 5.2.2);

c : conflict based instantiation through CCFV (see “Conflict based instantiation” in Sec-
tion 5.2.2);

64

5.3. Experiments

b : implements the breadth-first version of CCFV rather than the depth-first one (see Sec-
tion 5.2.1);

e : optimization for eagerly discarding branches with unmatchable applications (see “Discard-
ing unsuitable branches” in Section 5.2);

d : discards already entailed trigger based instances (see “Discarding entailed instances” in
Section 4.2.3)

The configuration verit refers to the previous version of veriT, which only offered support
for quantified formulas through naïve trigger instantiation, without further optimizations. The
configuration cvc refers to version 1.5 of CVC4, which applies t and c by default, as well as
propagation of equalities. Both veriT and CVC4 implement efficient term indexing and apply a
simple selection heuristic, checking ground and reflexive literals first but otherwise considering
the conjunction of constraints as a queue. The breadth-first variation of CCFV is implemented
only in veriT, using the simple strategy described in Sections 5.4 and 4.3.1.

The evaluation was made on the UF, UFLIA, UFLRA and UFIDL categories of SMT-
LIB [BFT15], with 10 495 benchmarks annotated as unsatisfiable5, mostly stemming for verifica-
tion and ITP platforms. The categories with bit vectors and non-linear arithmetic are currently
not supported by veriT and in those in which uninterpreted functions are not predominant the
techniques shown here are not as effective. Since veriT cannot produce models for formulas with
quantifiers and the finite-model finding techniques in CVC4 are not affected by CCFV, only
unsatisfiable problems were considered. Our experiments were conducted using machines with
2 CPUs Intel Xeon E5-2630 v3, 8 cores/CPU, 126GB RAM, 2x558GB HDD. The timeout was
set for 30 seconds, since our goal is evaluating SMT solvers as back-ends of verification and ITP
platforms, which require fast answers.

Figure 5.3 exhibits an important impact of CCFV and the techniques and optimizations
built on top of it. verit+t performs much better than verit, solely due to CCFV. Moreover,
verit+tc presents a significant improvement in terms of problems solved (474 more against
36 less) by the use of the conflict based instantiation, but it also shows a less clear gain of
time. Besides the difficulty to predict how combining any given technique with trigger based
instantiation will affect performance, we believe that this less clear gain in time is due to the more
expensive search performed: trying to falsify quantified formulas and handling full E-ground
(dis)unification, which, in the context of SMT, has a much bigger search space than simply
performing E -matching for pattern-matching instantiation. Not always the “better quality” of
the conflicting instances offsets the time it took to compute them, which indicates the necessity to
identify beforehand such cases and avoid the more expensive search when counter-productive. A
comparison of both flavours of CCFV is shown in Figure 5.4. Both variations perform well, with
the depth-first CCFV outperforming its breadth-first counterpart by a small margin. This shows
that both approaches are viable. cvc+d and cvc+e improve significantly over cvc, exhibiting

5As of 2016.

65

Chapter 5. Implementation

0.1

1

10

0.1 1 10

ve
rit

_t

verit

0.1

1

10

0.1 1 10

ve
rit

_t

verit

0.1

1

10

0.1 1 10

ve
rit

_t

verit

0.1

1

10

0.1 1 10

ve
rit

_t

verit

(a) verit+t vs. verit

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

0.1

1

10

0.1 1 10

ve
rit

_t
c

verit

Efficiency scatter plot

(b) verit+tc vs. verit

0.1

1

10

0.1 1 10

cv
c_

e

cvc

Efficiency scatter plot

0.1

1

10

0.1 1 10

cv
c_

e

cvc

Efficiency scatter plot

0.1

1

10

0.1 1 10

cv
c_

e

cvc

Efficiency scatter plot

0.1

1

10

0.1 1 10

cv
c_

e

cvc

Efficiency scatter plot

(c) cvc+e vs. cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

0.1

1

10

0.1 1 10

cv
c_

d

cvc

(d) cvc+d vs. cvc

Figure 5.3: Improvements in veriT and CVC4

Logic Class Z3 cvc+d cvc+e cvc verit+tc verit+tcb verit+t verit

UF grasshopper 418 411 420 415 430 435 418 413
sledgehammer 1249 1438 1456 1428 1277 1278 1134 1066

UFIDL all 62 62 62 62 58 58 58 58

UFLIA

boogie 852 844 834 801 706 690 660 661
sexpr 26 12 11 11 7 7 5 5
grasshopper 341 322 326 319 356 361 340 335
sledgehammer 1581 1944 1953 1929 1790 1799 1620 1569
simplify 831 766 706 705 803 801 735 690
simplify2 2337 2330 2292 2286 2307 2303 2291 2177

Total 7697 8129 8060 7956 7734 7736 7261 6916

Table 5.1: Instantiation based SMT solvers on SMT-LIB benchmarks

66

5.3. Experiments

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

t+
tc

verit+tcb

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

t+
tc

verit+tcb

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

t+
tc

verit+tcb

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

t+
tc

verit+tcb

Figure 5.4: Depth-first versus breadth-first CCFV

the advantage of techniques based on the CCFV features for entailment checking on the presence
of free variables.

The comparison between the different configurations of veriT and CVC4 with the SMT solver
Z3 (version 4.4.2) is summarised in Table 5.1, excluding categories (such as UFLRA) whose prob-
lems are trivially solved by all systems, which leaves 8 701 problems for consideration. The table
exhibits the total number of problems solved by each configuration within the timeout. verit+tc
solves approximately 800 more problems than verit, solving approximately the same total num-
ber of problems than Z3. Many of these new problems come from the sledgehammer benchmarks,
which contain less theory symbols and whose solving relies more on equational first-order logic.
Moreover, verit+tc performs best in the grasshopper families, stemming from the heap veri-
fication tool GRASShopper [PWZ14]. Considering the overall performance, both cvc+d and
cvc+e solve significantly more problems than cvc, specially in benchmarks from verification
platforms, approaching the performance of Z3 in these families. Both these techniques, as well
as the propagation of equalities, are fairly important points in the performance of CVC4, so their
implementation is a clear direction for improvements in veriT.

67

Part II

Proof Production

68

Chapter 6

Processing calculus

An increasing number of automatic theorem provers can generate certificates, or proofs, that
justify the formulas they derive. These proofs can be checked by other programs and shared across
reasoning systems. Some users will also want to inspect this output to understand why a formula
holds. Proof production is generally well understood for the core proving methods and for many
theories commonly used in satisfiability modulo theories (SMT). But most automatic provers
also perform some formula processing or preprocessing—such as clausification and rewriting
with theory-specific lemmas—and proof production for this aspect is less mature.

For most provers, the code for processing formulas is lengthy and deals with a multitude of
cases, some of which are rarely executed. Although it is crucial for efficiency, this code tends to be
given much less attention than other aspects of provers. Developers are reluctant to invest effort
in producing detailed proofs for such processing, since this requires adapting a lot of code. As a
result, the granularity of inferences for formula processing is often coarse. Sometimes, processing
features are even disabled to avoid gaps in proofs, at a high cost in proof search performance.

Fine-grained proofs are important for a variety of applications. We propose a framework to
generate such proofs without slowing down proof search. This chapter describes a proof calculus
in which to generate fine-grained proofs for processing formulas. The next chapter introduces
an scalable framework for generating such proofs. The work described in both chapters led to a
joint publication with Jasmin Blanchette and Pascal Fontaine [BBF17].

Conventions For the following chapters, we assume that our language for many-sorted first-
order logic with equality contains two more binders besides the quantifiers: Hilbert’s choice
operator εx. ϕ and a ‘let’ construct, let x̄n ' s̄n in t, which simultaneously assigns n variables
that can be used in the body t.

As before, we use the symbol = for syntactic equality on terms. The symbol =α stands
for syntactic equality up to renaming of bound variables. We reserve the names a, c, f, g, p, q

for function symbols; x, y, z for variables; r, s, t, u for terms (which may be formulas); ϕ,ψ for
formulas; and Q for quantifiers (∀ and ∃).

The notation t[x̄n] stands for a term that may depend on distinct variables x̄n; t[s̄n] is the

69

Chapter 6. Processing calculus

corresponding term where the terms s̄n are simultaneously substituted for x̄n; bound variables
in t are renamed to avoid capture. Following these conventions, Hilbert choice and ‘let’ are
characterized by

|= ∃x. ϕ[x] −�→ ϕ[εx. ϕ] (ε1)

|= (∀x. ϕ ' ψ) −�→ (εx. ϕ) ' (εx. ψ) (ε2)

|= (let x̄n ' s̄n in t[x̄n]) ' t[s̄n] (let)

The property (ε2) may seem unnecessary, but it provides determinism for the choice operator.
In particular, it ensures that reflexivity holds for terms involving ε, such that the substitution
of equals for equals is correct for such terms.

6.1 Inference system

The inference rules used by our framework depend on a notion of context defined by the grammar

Γ ::= ∅ | Γ, x | Γ, x̄n 7→ s̄n

The empty context ∅ is also denoted by a blank. Each context entry either fixes a variable x or
defines a substitution {x̄n 7→ s̄n}. Any variables arising in the terms s̄n will normally have been
introduced in the context Γ on the left. If a context introduces the same variable several times,
the rightmost entry shadows the others.

Abstractly, a context Γ fixes a set of variables and specifies a substitution subst(Γ). The
substitution is the identity for ∅ and is defined as follows in the other cases:

subst(Γ, x) = subst(Γ)[x 7→ x] subst(Γ, x̄n 7→ t̄n) = subst(Γ) ◦ {x̄n 7→ t̄n}

In the first equation, the [x 7→ x] update shadows any replacement of x induced by Γ. The
examples below illustrate this subtlety:

subst(x 7→ 7, x 7→ g(x)) = {x 7→ g(7)} subst(x 7→ 7, x, x 7→ g(x)) = {x 7→ g(x)}

We write Γ(t) to abbreviate the capture-avoiding substitution subst(Γ)(t).

Transformations of terms (and formulas) are justified by judgments of the form Γ B t ' u,
where Γ is a context, t is an unprocessed term, and u is the corresponding processed term. The
free variables in t and u must appear in the context Γ. Semantically, the judgment expresses the
equality of the terms Γ(t) and u for all variables fixed by Γ. Crucially, the substitution applies
only on the left-hand side of the equality.

The inference rules for the transformations covered in this thesis are presented below, followed
by explanations.

70

6.1. Inference system

TautT if |=T Γ(t) ' u
Γ B t ' u

Γ B s ' t Γ B t ' u
Trans if Γ(t) = t

Γ B s ' u(
Γ B ti ' ui

)
n
i=1

Cong
Γ B f(t̄n) ' f(ūn)

Γ, y, x 7→ y B ϕ ' ψ
Bind if y /∈ FV(Qx. ϕ)

Γ B (Qx. ϕ) ' (Qy. ψ)

Γ, x 7→ (εx. ϕ) B ϕ ' ψ
Sko ∃

Γ B (∃x. ϕ) ' ψ

Γ, x 7→ (εx. ¬ϕ) B ϕ ' ψ
Sko ∀

Γ B (∀x. ϕ) ' ψ(
Γ B ri ' si

)
n
i=1 Γ, x̄n 7→ s̄n B t ' u

Let if Γ(si) = si for all i ∈ [n]
Γ B (let x̄n ' r̄n in t) ' u

– TautT relies on an oracle |=T to derive arbitrary lemmas in a theory T . In practice, the
oracle will produce some kind of certificate to justify the inference. An important special
case, for which we use the name Refl, is syntactic equality (up to renaming of bound
variables); the side condition is then Γ(t) =α u. (We use =α instead of = because applying
a substitution can rename bound variables.)

– Trans needs the side condition because the term t appears both on the left-hand side of
' (where it is subject to Γ’s substitution) and on the right-hand side (where it is not).
Without the side condition, the two occurrences of t in the antecedent could denote different
terms.

– Cong can be used for any function symbol f, including the logical connectives.

– Bind is a congruence rule for quantifiers. The rule also justifies the renaming of the bound
variable(from x to y). The side condition prevents an unwarranted variable capture. In
the antecedent, the renaming is expressed by a substitution in the context. If x = y, the
context is Γ, x, x 7→ x, which has the same meaning as Γ, x.

– Sko ∃ and Sko ∀ exploit (ε1) to replace a quantified variable with a suitable witness, sim-
ulating skolemization. We can think of the ε expression in each rule abstractly as a fresh
function symbol that takes any fixed variables it depends on as arguments. In the an-
tecedents, the replacement is performed by the context.

– Let exploits (let) to expand a ‘let’ expression. Again, a substitution is used. The terms
r̄n assigned to the variables x̄n can be transformed into terms s̄n.

The antecedents of all the rules inspect subterms structurally, without modifying them. Mod-
ifications to the term on the left-hand side are delayed; the substitution is applied only in Taut.
This is crucial to obtain compact proofs that can be checked efficiently. Some of the side condi-
tions may look computationally expensive, but there are ways to compute them fairly efficiently.

71

Chapter 6. Processing calculus

Furthermore, by systematically renaming variables in Bind, we can satisfy most side conditions
trivially, as we will prove in Sect. 6.2.

The set of rules can be extended to cater for arbitrary transformations that can be expressed
as equalities, using Hilbert choice to represent fresh symbols if necessary. The usefulness of
Hilbert choice for proof reconstruction is well known [dNiv05, PS07, BW10], but we push the
idea further and use it to simplify and uniformize the inference system.

Example 6.1. The following derivation tree justifies the expansion of a ‘let’ expression:

Cong
B a ' a

Refl
x 7→ a B x ' a

Refl
x 7→ a B x ' a

Cong
x 7→ a B p(x, x) ' p(a, a)

Let
B (let x ' a in p(x, x)) ' p(a, a)

It is also possible to further process the substituted term, as in this derivation:

Taut+

B a + 0 ' a

...
Cong

x 7→ a B p(x, x) ' p(a, a)
Let

B (let x ' a + 0 in p(x, x)) ' p(a, a)

Example 6.2. The following derivation tree, in which εx abbreviates εx. ¬ p(x), justifies the
skolemization of the quantifier in the formula ¬∀x. p(x):

Refl
x 7→ εx B x ' εx

Cong
x 7→ εx B p(x) ' p(εx)

Sko ∀
B (∀x. p(x)) ' p(εx)

Cong
B (¬∀x. p(x)) ' ¬ p(εx)

The Cong inference above Sko ∀ is optional; we could have directly closed the derivation with
Refl. In a prover, the term εx would be represented by a fresh Skolem constant c, and we would
ignore c’s connection to εx during proof search.

Skolemization can be applied regardless of polarity. Normally, we skolemize only positive
existential quantifiers and negative universal quantifiers. However, skolemizing other quantifiers
is sound in the context of proving. The trouble is that it is generally incomplete, if we introduce
Skolem symbols and forget their definitions in terms of Hilbert choice. To paraphrase Orwell, all
quantifiers are skolemizable, but some quantifiers are more skolemizable than others.

Example 6.3. The next derivation tree illustrates the interplay between the theory rule TautT

72

6.1. Inference system

and the equality rules Trans and Cong:

Cong
B k ' k

Taut×
B 1×0 ' 0

Cong
B k + 1×0 ' k + 0

Taut+

B k + 0 ' k
Trans

B k + 1×0 ' k
Cong

B k ' k
Cong

B (k + 1×0 < k) ' (k < k)

We could extend the tree at the bottom with an extra application of Trans and Taut< to
simplify k < k further to false. The example demonstrates that theories can be arbitrarily fine-
grained, which often makes proof checking easier. At the other extreme, we could have derived
B (k + 1×0 < k) ' false using a single Taut+∪×∪< inference.

Example 6.4. The tree below illustrates what can go wrong if we ignore side conditions:

Refl
Γ1 B f(x) ' f(x)

Refl
Γ2 B x ' f(x)

Refl
Γ3 B p(y) ' p(f(f(x)))

Let*
Γ2 B (let y ' x in p(y)) ' p(f(f(x)))

Let
Γ1 B (let x ' f(x) in let y ' x in p(y)) ' p(f(f(x)))

Bind
B (∀x. let x ' f(x) in let y ' x in p(y)) ' (∀x. p(f(f(x))))

In the above, Γ1 = x, x 7→ x; Γ2 = Γ1, x 7→ f(x); and Γ3 = Γ2, y 7→ f(x). The inference marked
with an asterisk (*) is illegal, because Γ2(f(x)) = f(f(x)) 6= f(x). We exploit this to derive an
invalid judgment, with a spurious application of f on the right-hand side. To apply Let legally,
we must first rename the universally quantified variable x to a fresh variable z using the Bind

rule:

Refl
Γ1 B f(x) ' f(z)

Refl
Γ2 B x ' f(z)

Refl
Γ3 B p(y) ' p(f(z))

Let
Γ2 B (let y ' x in p(y)) ' p(f(z))

Let
Γ1 B (let x ' f(x) in let y ' x in p(y)) ' p(f(z))

Bind
B (∀x. let x ' f(x) in let y ' x in p(y)) ' (∀z. p(f(z)))

This time, we have Γ1 = z, x 7→ z; Γ2 = Γ1, x 7→ f(z); and Γ3 = Γ2, y 7→ f(z). Let’s side
condition is satisfied: Γ2(f(z)) = f(z).

Example 6.5. The dangers of capture are illustrated by the following tree, where εy stands for
εy. p(x) ∧ ∀x. q(x, y):

Refl*
x, y 7→ εy B (p(x) ∧ ∀x. q(x, y)) ' (p(x) ∧ ∀x. q(x, εy))

Sko ∃
x B (∃y. p(x) ∧ ∀x. q(x, y)) ' (p(x) ∧ ∀x. q(x, εy))

Bind
B (∀x.∃y. p(x) ∧ ∀x. q(x, y)) ' (∀x. p(x) ∧ ∀x. q(x, εy))

73

Chapter 6. Processing calculus

The inference marked with an asterisk would be legal if Refl’s side condition were stated using
a capturing substitution. The final judgment is unwarranted, because the free variable x in the
first conjunct of εy is captured by the inner universal quantifier on the right-hand side.

To avoid the capture, we rename the inner bound variable x to z. Then it does not matter
if we use a capture-avoiding or a capturing substitution:

Refl
x, y 7→ εy B p(x) ' p(x)

Refl
x, y 7→ εy, x 7→ z B q(x, y) ' q(z, εy)

Bind
x, y 7→ εy B (∀x. q(x, y)) ' (∀z. q(z, εy))

Cong
x, y 7→ εy B (p(x) ∧ ∀x. q(x, y)) ' (p(x) ∧ ∀z. q(z, εy))

Sko ∃
x B (∃y. p(x) ∧ ∀x. q(x, y)) ' (p(x) ∧ ∀z. q(z, εy))

Bind
B (∀x.∃y. p(x) ∧ ∀x. q(x, y)) ' (∀x. p(x) ∧ ∀z. q(z, εy))

6.2 Soundness

To prove the soundness of the processing calculus we start by encoding the judgments in a well-
understood theory of binders: the simply typed λ-calculus. A context and a term will be encoded
together as a single λ-term. We call these somewhat nonstandard λ-terms metaterms. They are
defined by the grammar

M ::= t | λx. M | (λx̄n. M) t̄n

where xi and ti are of the same sort for each i ∈ [n]. A metaterm is either a term t decorated
with a box , a λ-abstraction, or the application of an n-tuple of terms to an uncurried λ-
abstraction that simultaneously binds n distinct variables. We let =αβ denote syntactic equality
modulo α- and β-equivalence (i.e., up to renaming of bound variables and reduction of applied
λ-abstractions). We use the letters M,N,P to refer to metaterms. The notion of type is as
expected for simply typed λ-terms: The type of t is the sort of t; the type of λx. M is σ → τ ,
where σ is the sort of x and τ the type of M ; and the type of (λx̄n. M) t̄n is the type of M . It is
easy to see that all metaterms contain exactly one boxed term. M [t] denotes a metaterm whose
box contains t, and M [N] denotes the same metaterm after its box has been replaced with the
metaterm N.

Encoded judgments will have the formM ' N. The λ-abstractions and applications represent
the context, whereas the box stores the term. To invoke the theory oracle |=T , we will need to
reify equalities on metaterms—i.e., map them to equalities on terms. LetM, N be metaterms of
type σ1 → · · · → σn → σ. We define reify(M ' N) as ∀x̄n. t ' u, where M =αβ λx1. . . . λxn. t

and N =αβ λx1. . . . λxn. u . Thanks to basic properties of the λ-calculus, t and u are always
defined uniquely up to the names of the bound variables. For example, if M = λu. (λv. p(v)) u

and N = λw. q(w) , we have M =αβ λx. p(x) and N =αβ λx. q(x) , and the reification of
M ' N is ∀x. p(x) ' q(x).

The inference rules presented in Sect. 6.1 can now be encoded as follows. We refer to these
new rules collectively as the encoded inference system:

74

6.2. Soundness

TautT if |=T reify(M ' N)
M ' N

M ' N N ′ ' P
Trans if N =αβ N

′

M ' P

(
M [ti] ' N [ui]

)
n
i=1

Cong
M [f(t̄n)] ' N [f(ūn)]

M [λy. (λx. ϕ) y] ' N [λy. ψ]
Bind if y /∈ FV(Qx. ϕ)

M [Qx. ϕ] ' N [Qy. ψ]

M [(λx. ϕ) (εx. ϕ)] ' N
Sko ∃

M [∃x. ϕ] ' N

M [(λx. ϕ) (εx. ¬ϕ)] ' N
Sko ∀

M [∀x. ϕ] ' N(
M [ri] ' N [si]

)
n
i=1 M [(λx̄n. t) s̄n] ' N [u]

Let if M [si] =αβ N [si] for all i ∈ [n]
M [let x̄n ' r̄n in t] ' N [u]

Lemma 6.1. If the judgment M ' N is derivable using the encoded inference system with the
theories T1, . . . , Tn, then |=T reify(M ' N) with T = T1 ∪ · · · ∪ Tn ∪ ' ∪ ε1 ∪ ε2 ∪ let.

Proof. By structural induction on the derivation of M ' N . For each inference rule, we assume
that |=T reify(Mi ' Ni) holds for each judgment Mi ' Ni in the antecedent and show that
|=T reify(M ' N). Most of the cases implicitly depend on basic properties of the λ-calculus to
reason about reify .

Case TautT ′ : Trivial because T ′ ⊆ T by definition of T .

Cases Trans, Cong, and Bind: These follow from the theory of equality (').

Cases Sko∃, Sko ∀, and Let: These follow from (ε1) and (ε2) or (let) and from the congruence
of equality.

A judgment Γ B t ' u is encoded as L(Γ)[t] ' R(Γ)[u], where

L(∅)[t] = t R(∅)[u] = u

L(x,Γ)[t] = λx. L(Γ)[t] R(x,Γ)[u] = λx. R(Γ)[u]

L(x̄n 7→ s̄n,Γ)[t] = (λx̄n. L(Γ)[t]) s̄n R(x̄n 7→ s̄n,Γ)[u] = R(Γ)[u]

The L function encodes the substitution entries of Γ as λ-abstractions applied to tuples. Reducing
the applied λ-abstractions effectively applies subst(Γ). For example:

L(x 7→ 7, x 7→ g(x))[x] = (λx. (λx. x) (g(x))) 7 =αβ g(7)

L(x 7→ 7, x, x 7→ g(x))[x] = (λx. λx. (λx. x) (g(x))) 7 =αβ λx. g(x)

For any derivable judgment Γ B t ' u, the terms t and u must have the same sort, and the
metaterms L(Γ)[t] and R(Γ)[u] must have the same type. Another property is that L(Γ)[t] is
of the form M [t] for some M that is independent of t and similarly for R(Γ)[u], motivating the
suggestive brackets around L’s and R’s term argument.

75

Chapter 6. Processing calculus

Lemma 6.2. Let x̄n be the list of variables fixed by the context Γ in order of occurrence. Then
L(Γ)[t] =αβ λx1. . . . λxn. Γ(t) .

Proof. By induction on Γ.

Case ∅: L(∅)[t] = t = ∅(t) .

Case x, Γ: Let ȳn be the variables fixed by Γ.

L(x, Γ)[t] = λx. L(Γ)[t]

=αβ λx.λy1. . . . λyn. Γ(t) {by the induction hypothesis}

= λx.λy1. . . . λyn. (x, Γ)(t) {by (∗)}

where (∗) is the property that subst(Γ) = subst(x,Γ) for all x and Γ, which is easy to prove by
structural induction on Γ.

Case x̄n 7→ s̄n, Γ: Let ȳn be the variables fixed by Γ, and let ρ = {x̄n 7→ s̄n}[ȳn 7→ ȳn].

L(x̄n 7→ s̄n, Γ)[t] = (λx̄n. L(Γ)[t]) s̄n

=αβ (λx̄n.λy1. . . . λyn. Γ(t)) s̄n {by the induction hypothesis}

=αβ λy1. . . . λyn. ρ(Γ(t)) {by β-reduction}

= λy1. . . . λyn. (x̄n 7→ s̄n, Γ)(t) {by (∗∗)}

where (∗∗) is the property that ρ ◦ subst(Γ) = subst(x̄n 7→ s̄n, Γ) for all x̄n, s̄n, and Γ, which is
easy to prove by structural induction on Γ.

Lemma 6.3. If the judgment Γ B t ' u is derivable using the original inference system, then
L(Γ)[t] ' R(Γ)[u] is derivable using the encoded inference system.

Proof. By structural induction on the derivation of Γ B t ' u.

Case TautT : We have |=T Γ(t) ' u. Using Lemma 6.2, we can easily show that |=T Γ(t) ' u
is equivalent to |=T reify(L(Γ)[t] ' R(Γ)[u]), the side condition of the encoded TautT rule.

Case Bind: The encoded antecedent is M [λy. (λx. ϕ) y] ' N [λy. ψ] (i.e., L(Γ, y, x 7→ y)

[ϕ] ' R(Γ, y, x 7→ y)[ψ]), and the encoded succedent is M [Qx. ϕ] ' N [Qy. ψ]. By the induction
hypothesis, the encoded antecedent is derivable. Thus, by the encoded Bind rule, the encoded
succedent is derivable.

Cases Cong, Sko ∃, and Sko∀: Similar to Bind.

Case Trans: If Γ(t) = t, the substitution entries of Γ affect only variables that do not occur
free in t. Hence, R(Γ)[t] =αβ L(Γ)[t], as required by the encoded Trans rule.

Case Let: Similar to Trans.

Incidentally, the converse of Lemma 6.3 does not hold, since the encoded inference rules allow
metaterms that contain applied λ-abstractions on the right-hand side of '.

76

6.3. A proof of concept checker

Theorem 6.4 (Soundness of Inferences). If the judgment Γ B t ' u is derivable using the
original inference system with the theories T1, . . . , Tn, then the entailment |=T Γ(t) ' u holds,
with T = T1 ∪ · · · ∪ Tn ∪ ' ∪ ε1 ∪ ε2 ∪ let.

Proof. This follows from Lemmas 6.1 and 6.3. The equivalence of |=T Γ(t) ' u and

|=T reify(L(Γ)[t] ' R(Γ)[u])

can be established along the lines of case TautT of Lemma 6.3.

6.3 A proof of concept checker

We developed a prototypical proof checker for the inference system above using Isabelle/HOL
[NPW02], to convince ourselves that proofs generated according to it can easily be reconstructed.

The Isabelle/HOL proof assistant is based on classical higher-order logic (HOL) [GM93], a
variant of the simply typed λ-calculus. Thanks to the availability of λ-terms, we could follow
the lines of the encoded inference system of Sect. 6.2 to represent judgments in HOL. The proof
checker is included in the development version of Isabelle.6

Derivations are represented by a recursive datatype in Standard ML, Isabelle’s primary im-
plementation language. A derivation is a tree whose nodes are labeled by rule names. Rule
TautT additionally carries a theorem that represents the oracle |=T , and rules Trans and Let

are labeled with the terms that occur only in the antecedent (t and s̄n). Terms and metaterms
are translated to HOL terms, and judgments M ' N are translated to HOL equalities t ' u,
where t and u are HOL terms. Uncurried λ-applications are encoded using a polymorphic com-
binator case× : (α → β → γ) → α × β → γ; in Isabelle/HOL, λ(x, y). t is syntactic sugar
for case× (λx.λy. t). This scheme is iterated to support n-tuples, represented by nested pairs
(t1, (· · · (tn−1, tn) · · ·)).

To implement the inference rules, it is necessary to be able to locate any metaterm’s box.
There is an easy criterion: Translated metaterms are of the form (λ. . . .) . . . or case× . . . , which is
impossible for a translated term. Because reconstruction is not verified, there are no guarantees
that it will always succeed, but when it does, the result is certified by Isabelle’s LCF-style
inference kernel [GMW79]. We hard-coded a few dozen examples to test different cases, such as
this one: Given the HOL terms

t = ¬ ∀x. p ∧ ∃x. ∀x. q x x and u = ¬ ∀x. p ∧ ∃x. q (εx. ¬ q x x) (εx. ¬ q x x)

and the ML tree

N (Cong, [N (Bind, [N (Cong, [N (Refl, []),N (Bind, [N (Sko_All, [N (Refl, [])])])])])]))

6http://isabelle.in.tum.de/repos/isabelle/file/00731700e54f/src/HOL/ex/veriT_Preprocessing.
thy

77

http://isabelle.in.tum.de/repos/isabelle/file/00731700e54f/src/HOL/ex/veriT_Preprocessing.thy
http://isabelle.in.tum.de/repos/isabelle/file/00731700e54f/src/HOL/ex/veriT_Preprocessing.thy

Chapter 6. Processing calculus

the reconstruction function returns the HOL theorem t ' u.

78

Chapter 7

Proof-producing contextual recursion

We propose a generic algorithm for term transformations, based on structural recursion. The
algorithm is parameterized by a few simple plugin functions embodying the essence of the trans-
formation. By combining compatible plugin functions, we can perform several transformations
in one traversal. Transformations can depend on some context that encapsulates relevant infor-
mation, such as bound variables, variable substitutions, and polarity. Each transformation can
define its own notion of context that is threaded through the recursion.

The output is generated by a proof module that maintains a stack of derivation trees. The
procedure apply(R, n, Γ, t, u) pops n derivation trees D̄n from the stack and pushes the tree

D1 · · · Dn
R

Γ B t ' u

onto the stack.The plugin functions are responsible for invoking apply as appropriate.

7.1 The generic algorithm and its instantiations

The algorithm performs a depth-first postorder contextual recursion on the term to process.
Subterms are processed first; then an intermediate term is built from the resulting subterms and
is processed itself. The context ∆ is updated in a transformation-specific way with each recursive
call. It is abstract from the point of view of the algorithm.

The plugin functions are divided into two groups: ctx-let , ctx-quant , and ctx-app update
the context when entering the body of a binder or when moving from a function symbol to one
of its arguments; build-let , build-quant , build-app, and build-var return the processed term and
produce the corresponding proof as a side effect.

function process(∆, t)
match t
case x:
return build-var(∆, x)

case f(t̄n):

79

Chapter 7. Proof-producing contextual recursion

∆̄′n ← (ctx-app(∆, f, t̄n, i))
n
i=1

return build-app
(
∆, ∆̄′n, f, t̄n, (process(∆′i, ti))

n
i=1

)
case Qx. ϕ:

∆′ ← ctx-quant(∆, Q, x, ϕ)
return build-quant(∆, ∆′, Q, x, ϕ, process(∆′, ϕ))

case let x̄n ' r̄n in t′:
∆′ ← ctx-let(∆, x̄n, r̄n, t′)
return build-let(∆, ∆′, x̄n, r̄n, t

′, process(∆′, t′))

7.1.1 ‘Let’ expansion

The first instance of the contextual recursion algorithm expands ‘let’ expressions and renames
bound variables systematically to avoid capture. Skolemization and theory simplification, pre-
sented below, assume that this transformation has been performed.

The context consists of a list of fixed variables and variable substitutions, as in Sect. 6.1.
The plugin functions are as follows:

function ctx-let(Γ, x̄n, r̄n, t)
return Γ, x̄n 7→ (process(Γ, ri))ni=1

function ctx-app(Γ, f, t̄n, i)
return Γ

function build-let(Γ, Γ′, x̄n, r̄n, t, u)
apply(Let, n+ 1, Γ, let x̄n ' r̄n in t, u)
return u

function build-app(Γ, Γ̄′n, f, t̄n, ūn)
apply(Cong, n, Γ, f(t̄n), f(ūn))
return f(ūn)

function ctx-quant(Γ, Q, x, ϕ)
y ← fresh variable
return Γ, y, x 7→ y

function build-quant(Γ, Γ′, Q, x, ϕ, ψ)
y ← Γ′(x)
apply(Bind, 1, Γ, Qx. ϕ, Qy. ψ)
return Qy. ψ

function build-var(Γ, x)
apply(Refl, 0, Γ, x, Γ(x))
return Γ(x)

The ctx-let and build-let functions process ‘let’ expressions. In ctx-let, the substituted terms
are processed further before they are added to a substitution entry in the context. In build-let,
the Let rule is applied and the transformed term is returned. Analogously, the ctx-quant and
build-quant functions rename quantified variables systematically. This ensures that any variables
that arise in the range of the substitution specified by ctx-let will resist capture when the substitu-
tion is applied (cf. Example 6.4). Finally, the ctx-app, build-app, and build-var functions simply
reproduce the term traversal in the generated proof; they perform no transformation-specific
work.

Example 7.1. Following up on Example 6.1, assume ϕ = let x ' a in p(x, x). Given the above
plugin functions, process(∅, ϕ) returns p(a, a). It is instructive to study the evolution of the
stack during the execution of process. First, in ctx-let, the term a is processed recursively; the
call to build-app pushes a nullary Cong step with succedent B a ' a onto the stack. Then the

80

7.1. The generic algorithm and its instantiations

term p(x, x) is processed. For each of the two occurrences of x, build-var pushes a Refl step
onto the stack. Next, build-app applies a Cong step to justify rewriting under p: The two Refl

steps are popped, and a binary Cong is pushed. Finally, build-let performs a Let inference with
succedent B ϕ ' p(a, a) to complete the proof: The two Cong steps on the stack are replaced
by the Let step. The stack now consists of a single item: the derivation tree of Example 6.1.

7.1.2 Skolemization

Our second transformation, skolemization, assumes that ‘let’ expressions have been expanded
and bound variables have been renamed apart. The context is a pair ∆ = (Γ, p), where Γ is a
context as defined in Sect. 6.1 and p is the polarity (+, −, or ?) of the term being processed.
The main plugin functions are those that manipulate quantifiers:

function ctx-quant((Γ, p), Q, x, ϕ)
if (Q, p) ∈ {(∃,+), (∀,−)} then

Γ′ ← Γ, x 7→ sko_term(Γ, Q, x, ϕ)
else

Γ′ ← Γ, x

return (Γ′, p)

function build-quant((Γ, p), ∆′, Q, x, ϕ, ψ)
if (Q, p) ∈ {(∃,+), (∀,−)} then
apply(SkoQ, 1, Γ, Qx. ϕ, ψ)
return ψ

else
apply(Bind, 1, Γ, Qx. ϕ, Qx. ψ)
return Qx. ψ

The polarity component of the context is updated by ctx-app, which is not shown. For
example, ctx-app((Γ, −), ¬, ϕ, 1) returns (Γ, +), because if ¬ϕ occurs negatively in a larger
formula, then ϕ occurs positively. The plugin functions build-app and build-var are as for ‘let’
expansion.

Positive occurrences of ∃ and negative occurrences of ∀ are skolemized. All other quantifiers
are kept as is. The sko_term function returns an applied Skolem function symbol following some
reasonable scheme; for example, outer skolemization [NWCS01] creates an application of a fresh
function symbol to all variables fixed in the context. To comply with the inference system, the
application of Sko ∃ or Sko ∀ in build-quant instructs the proof module to systematically replace
the Skolem term with the corresponding ε term when outputting the proof.

Example 7.2. Let ϕ = ¬∀x. p(x). The call process((∅, +), ϕ) skolemizes ϕ into ¬ p(c), where
c is a fresh Skolem constant. The initial process call invokes ctx-app on ¬ as the second argument,
making the context negative, thereby enabling skolemization of ∀. The substitution x 7→ c is
added to the context. Applying Sko ∀ instructs the proof module to replace c with εx. ¬ p(x).
The resulting derivation tree is as in Example 6.2.

7.1.3 Theory simplification

All kinds of theory simplification can be performed on formulas. We restrict our focus to a simple
yet quite characteristic instance: the simplification of u+ 0 and 0 + u to u. We assume that ‘let’
expressions have been expanded. The context is a list of fixed variables. The plugin functions

81

Chapter 7. Proof-producing contextual recursion

ctx-app and build-var are as for ‘let’ expansion (Sect. 7.1.1); the remaining ones are presented
below:

function ctx-quant(Γ, Q, x, ϕ)
return Γ, x

function build-quant(Γ, Γ′, Q, x, ϕ, ψ)
apply(Bind, 1, Γ, Qx. ϕ, Qx. ψ)
return Qx. ψ

function build-app(Γ, Γ̄′n, f, t̄n, ūn)
apply(Cong, n, Γ, f(t̄n), f(ūn))
if f(ūn) has form u+ 0 or 0 +u then
apply(Taut+, 0, Γ, f(ūn), u)
apply(Trans, 2, Γ, f(t̄n), u)
return u

else
return f(ūn)

The quantifier manipulation code, in ctx-quant and build-quant , is straightforward. The
interesting function is build-app. It first applies the Cong rule to justify rewriting the arguments.
Then, if the resulting term f(ūn) can be simplified further into a term u, it performs a transitive
chain of reasoning: f(t̄n) ' f(ūn) ' u.

Example 7.3. Let ϕ = k + 1× 0 < k. Assuming that the framework has been instantiated with
theory simplification for additive and multiplicative identity, invoking process(∅, ϕ) returns the
formula k < k. The generated derivation tree is as in Example 6.3.

7.1.4 Combinations of transformations

Theory simplification can be implemented as a family of transformations, each member of which
embodies its own set of theory-specific rewrite rules. If the union of the rewrite rule sets is con-
fluent and terminating, a unifying implementation of build-app can apply the rules in any order
until a fixpoint is reached. Moreover, since theory simplification modifies terms independently
of the context, it is compatible with ‘let’ expansion and skolemization. This means that we
can replace the build-app implementation from Sect. 7.1.1 or 7.1.2 with that of Sect. 7.1.3. In
particular, this allows us to perform arithmetic simplification in the substituted terms of a ‘let’
expression in a single pass (cf. Example 6.1).

The combination of ‘let’ expansion and skolemization is less straightforward. Consider the
formula ϕ = let y ' ∃x. p(x) in y → y. When processing the subformula ∃x. p(x), we cannot (or
at least should not) skolemize the quantifier, because it has no unambiguous polarity; indeed,
the variable y occurs both positively and negatively in the ‘let’ expression’s body. We can of
course give up and perform two passes: The first pass expands ‘let’ expressions, and the second
pass skolemizes and simplifies terms. The first pass also provides an opportunity to expand
equivalences, which are problematic for skolemization.

There is also a way to perform all the transformations in a single instance of the framework.
The most interesting plugin functions are ctx-let and build-var:

82

7.1. The generic algorithm and its instantiations

function ctx-let((Γ, p), x̄n, r̄n, t)
for i = 1 to n do
apply(Refl, 0, Γ, xi, Γ(ri))

Γ′ ← Γ, x̄n 7→ (Γ(ri))
n
i=1

return
(
Γ′, p)

function build-var((Γ, p), x)
apply(Refl, 0, Γ, x, Γ(x))
u← process((Γ, p), Γ(x))
apply(Trans, 2, Γ, Γ(x), u)
return u

In contrast with the corresponding function for ‘let’ expansion (Sect. 7.1.1), ctx-let does not
process the terms r̄n, which is reflected by the n applications of Refl, and it must thread
through polarities. The call to process is in build-var instead, where it can exploit the more
precise polarity information to skolemize the formula.

The build-let function is essentially as before. The ctx-quant and build-quant functions are
as for skolemization (Sect. 7.1.2), except that the else cases rename bound variables apart
(Sect. 7.1.1). The ctx-app function is as for skolemization, whereas build-app is as for theory
simplification (Sect. 7.1.3).

For the formula ϕ given above, process((∅, +), ϕ) returns (∃x. p(x)) → p(c), where c is a
fresh Skolem constant. The substituted term ∃x. p(x) is put unchanged into the substitution
used to expand the ‘let’ expression. It is processed each time y arises in the body y −�→ y.
The positive occurrence is skolemized; the negative occurrence is left as is. Using caching and a
DAG representation of derivations, we can easily avoid the duplicated work that would arise if
y occurred several times with positive polarity.

7.1.5 Scope and limitations

Other possible instances of contextual recursion are the clause normal form (CNF) transformation
and the elimination of quantifiers using one-point rules. CNF transformation is an instance of
rewriting of Boolean formulas and can be justified by a TautBool rule. Tseytin transformation can
be supported by representing the introduced constants by the formulas they represent, similarly
to our treatment of Skolem terms. One-point rules—e.g., the transformation of ∀x. x ' a −�→ p(x)

into p(a)—are similar to ‘let’ expansion and can be represented in much the same way in our
framework. The rules for eliminating universal and existential quantifiers are as follows:

Γ B s ' t Γ, x 7→ t B ϕ ' ψ
1Pt ∀ if x /∈ FV(s) and Γ(t) = t

Γ B (∀x. x ' s −�→ ϕ) ' ψ

Γ B s ' t Γ, x 7→ t B ϕ ' ψ
1Pt ∃ if x /∈ FV(s) and Γ(t) = t

Γ B (∃x. x ' s ∧ ϕ) ' ψ

The plugin functions used by process would also be similar as those for ‘let’ expansion, except
that detecting the assignment at ctx-quant requires examining the body of the quantified formula
to determine whether the one-point rule is applicable.

Some transformations, such as symmetry breaking [DFMP11] and rewriting based on global
assumptions, require a global analysis of the problem that cannot be captured by local substitu-
tion of equals for equals. They are beyond the scope of the framework. Other transformations,

83

Chapter 7. Proof-producing contextual recursion

such as simplification based on associativity and commutativity of function symbols, require
traversing the terms to be simplified when applying the rewriting. Since process visits terms
in postorder, the complexity of the simplifications would be quadratic, while a processing that
applies depth-first preorder traversal can perform the simplifications with a linear complexity.
Hence, applying such transformations optimally is also outside the scope of the framework.

7.2 Correctness

We turn to the contextual recursion algorithm that generates derivations in that system. The
first question is, Are the derivation trees valid? In particular, it is not obvious from the code
that the side conditions of the inference rules are always satisfied. First, we need to introduce
some terminology. A term is shadowing-free if nested binders always bind variables with dif-
ferent names; for example, the term ∀x. (∀y. p(x, y)) ∧ (∀y. q(y)) is shadowing-free, while
∀x. (∀x. p(x, y)) ∧ (∀y. q(y)) is not. The set of variables fixed by Γ is written fix (Γ), and the
set of variables replaced by Γ is written repl(Γ). They are defined as follows:

fix (∅) = {} repl(∅) = {}
fix (Γ, x) = {x} ∪ fix (Γ) repl(Γ, x) = repl(Γ)

fix (Γ, x̄n 7→ s̄n) = fix (Γ) repl(Γ, x̄n 7→ s̄n) = {xi | si 6= xi} ∪ repl(Γ)

Trivial substitutions x 7→ x are ignored, since they have no effect. The set of variables introduced
by Γ is defined by intr(Γ) = fix (Γ) ∪ repl(Γ). A context Γ is consistent if all the fixed variables
are mutually distinct and the two sets of variables are disjoint—i.e., fix (Γ) ∩ repl(Γ) = {}.

A judgment Γ B t ' u is canonical if Γ is consistent, FV(t) ⊆ intr(Γ), FV(u) ⊆ fix (Γ), and
BV(u) ∩ intr(Γ) = {}. The canonical inference system is a variant of the system of Sect. 6.1 in
which all judgments are canonical and rules Trans, Bind, and Let have no side conditions.

Lemma 7.1. Any inference in the canonical inference system is also an inference in the original
inference system.

Proof. It suffices to show that the side conditions of the original rules are satisfied.

Case Trans: Since the first judgment in the antecedent is canonical, FV(t) ⊆ fix (Γ). By
consistency of Γ, we have fix (Γ) ∩ repl(Γ) = {}. Hence, FV(t) ∩ repl(Γ) = {} and therefore
Γ(t) = t.

Case Bind: Since the succedent is canonical, we have that (1) FV(Qx. ϕ) ⊆ intr(Γ) and
(2) BV(Qy. ψ) ∩ intr(Γ) = {} hold. From (2), we deduce y /∈ intr(Γ). Hence, by (1), we
get y /∈ FV(Qx. ϕ).

Case Let: Similar to Trans.

Theorem 7.2 (Total Correctness of Recursion). For the instances presented in Sects. 7.1.1
to 7.1.3, the contextual recursion algorithm always produces correct proofs.

84

7.2. Correctness

Proof. The algorithm terminates because process is called initially on a finite input and recursive
calls always have smaller inputs.

For the proof of partial correctness, only the Γ part of the context is relevant. We will
write process(Γ, t) even if the first argument actually has the form (Γ, p) for skolemization. The
pre- and postconditions of a process(Γ, t) call that returns the term u are

Pre1 Γ is consistent;

Pre2 FV(t) ⊆ intr(Γ);

Pre3 BV(t) ∩ fix (Γ) = {};

Post1 u is shadowing-free;

Post2 FV(u) ⊆ fix (Γ);

Post3 BV(u) ∩ intr(Γ) = {}.

For skolemization and simplification, we may additionally assume that bound variables have been
renamed apart by ‘let’ expansion, and hence that the term t is shadowing-free.

The initial call process(∅, t) trivially satisfies the preconditions on an input term t that con-
tains no free variable. We must show that the preconditions for each recursive call process(Γ′, t′)
are satisfied and that the postconditions hold at the end of process(Γ, t).

Pre1 (Γ′ is consistent): First, we show that the fixed variables are mutually distinct. For ‘let’
expansion, all fixed variables are fresh. For skolemization and simplification, a precondition is
that the input is shadowing-free. For any two fixed variables in Γ′, the input formula must
contain two quantifiers, one in the scope of the other. Hence, the variables must be distinct.
Second, we show that fix (Γ′) ∩ repl(Γ′) = {}. For ‘let’ expansion, all fixed variables are fresh.
For skolemization, the condition is a direct consequence of the precondition that the input is
shadowing-free. For simplification, we have repl(Γ′) = {}.

Pre2 (FV(t′) ⊆ intr(Γ′)): We have FV(t) ⊆ intr(Γ). The desired property holds because the
ctx-let and ctx-quant functions add to the context any bound variables that become free when
entering the body t′ of a binder.

Pre3 (BV(t′) ∩ fix (Γ′) = {}): The only function that fixes variable is ctx-quant. For ‘let’ ex-
pansion, all fixed variables are fresh. For skolemization and simplification, the condition is a
consequence of the shadowing-freedom of the input.

Post1 (u is shadowing-free): The only function that builds quantifiers is build-quant. The
process(Γ′, ϕ) call that returns the processed body ψ of the quantifier is such that y ∈ intr(Γ′)

in the ‘let’ expansion case and x ∈ intr(Γ′) in the other two cases. The induction hypothesis
ensures that ψ is shadowing-free and BV(ψ) ∩ intr(Γ′) = {}; hence, the result of build-quant
(i.e., Qy.ψ or Qx.ψ) is shadowing-free. Quantifiers can also emerge when applying a substitution
in build-var. This can happen only if ctx-let has added a substitution entry to the context, in
which case the substituted term is the result of a call to process and is thus shadowing-free.

Post2 (FV(u) ⊆ fix (Γ)): In most cases, this condition follows directly from the induction hy-
pothesis Post2. The only case where a variable appears fixed in the context Γ′ of a recursive call
to process and not in Γ is when processing a quantifier, and then that variable is bound in the
result. For variable substitution, it suffices to realize that the context in which the substituted

85

Chapter 7. Proof-producing contextual recursion

term is created (and which fixes all the free variables of the term) is a prefix of the context when
the substitution occurs.

Post3 (BV(u) ∩ intr(Γ) = {}): In most cases, this condition follows directly from the induction
hypothesis Post3: For every recursive call, intr(Γ) ⊆ intr(Γ′). Two cases require attention. For
‘let’ expansion, a variable may be replaced by a term with bound variables. Then the substituted
term only contains variables that do not occur in the input. The variables introduced by Γ will be
other fresh variables or variables from the input. The second case is when a quantified formula is
built. For ‘let’ expansion, a fresh variable is used. For skolemization and simplification, we have
BV(Qx. ϕ) ∩ fix (Γ) = {} (Pre3); hence x /∈ fix (Γ). Finally, we must show that x /∈ repl(Γ);
this is a consequence of the shadowing-freedom of the input.

It is easy to see that each apply call generates a rule with an antecedent and a succedent of
the right form, ignoring the rules’ side conditions. Moreover, all calls to apply generate canon-
ical judgments thanks to the pre- and postconditions proved above. Correctness follows from
Lemma 7.1.

Observation 7.3 (Complexity of Recursion). For the instances presented in Sects. 7.1.1 to 7.1.3,
the ‘process’ function is called at most once on every subterm of the input.

Justification. It suffices to notice that a call to process(∆, t) induces at most one call for each of
the subterms in t.

As a corollary, if all the operations performed in process excluding the recursive calls can
be accomplished in constant time, the algorithm has linear-time complexity with respect to
the input. There exist data structures for which the following operations take constant time:
extending the context with a fixed variable or a substitution, accessing direct subterms of a
term, building a term from its direct subterms, choosing a fresh variable, applying a context
to a variable, checking if a term matches a simple template, and associating the parameters of
the template with the subterms. Thus, it is possible to have a linear-time algorithm for ‘let’
expansion and simplification.

On the other hand, construction of Skolem terms is at best linear in the size of the context
and of the input formula in process. Hence, skolemization is at best quadratic in the worst case.
This is hardly surprising because in general, the formula ∀x1.∃y1. . . .∀xn. ∃yn. ϕ[x̄n, ȳn], whose
size is proportional to n, is translated to ∀x1. . . .∀xn. ϕ[x̄n, f1(x̄1), f2(x̄2), . . . , fn(x̄n)], whose size
is quadratic in n.

Observation 7.4 (Overhead of Proof Generation). For the instances presented in Sects. 7.1.1
to 7.1.3 , the number of calls to the ‘apply’ procedure is proportional to the number of subterms
in the input.

Justification. This is a corollary of Observation 7.3, since the number of apply calls per process

86

7.3. Implementation

call is bounded by a constant (3, in build-app for simplification).

Notice that all arguments to apply must be computed regardless of the apply calls. If an
apply call takes constant time, the proof generation overhead is linear in the size of the input.
To achieve this performance, it is necessary to use sharing to represent contexts and terms in the
output; otherwise, each call to apply might itself be linear in the size of its arguments, resulting
in a nonlinear overhead on the generation of the entire proof.

Observation 7.5 (Cost of Proof Checking). Checking an inference step can be performed in
constant time if checking the side condition takes constant time.

Justification. The inference rules involve only shallow conditions on contexts and terms, except
in the side conditions. Using suitable data structures with maximal sharing, the contexts and
terms can be checked in constant time.

The above statement may appear weak, since checking the side conditions might itself be
linear, leading to a cost of proof checking that can be at least quadratic in the size of the proof
(measured as the number of symbols that represent it). Fortunately, most of the side conditions
can be checked efficiently. For example, for simplification (Sect. 7.1.3), the Bind rule is always
applied with x = y, which implies the side condition y /∈ FV(Qx. ϕ); and since no other rule
contributes to the substitution, subst(Γ) is the identity. Thus, simplification proofs can be
checked in linear time.

Moreover, certifying a proof by checking each step locally is not the only possibility. An
alternative is to use an algorithm similar to the process function to check a proof in the same
way as it has been produced. Such an algorithm can exploit sophisticated invariants on the
contexts and terms.

7.3 Implementation

We implemented the contextual recursion algorithm and the transformations described in Sect. 7.1
in the SMT solver veriT [BdODF09], replacing large parts of the previous non-proof-producing,
hard-to-maintain code. Even though it offers more functionality (proof generation), the prepro-
cessing module is about 20% smaller than before and consists of about 3000 lines of code. There
are now only two traversal functions instead of 10. This is, for us, a huge gain in maintainabil-
ity. Besides, as our experimental data attests, we had no significant detrimental impact on the
solving times or success rates, despite the production of detailed proofs.

Proofs

Previously, veriT provided detailed proofs for the resolution steps performed by the SAT solver
and the lemmas added by the theory solvers and instantiation module. All transformations per-

87

Chapter 7. Proof-producing contextual recursion

formed in preprocessing steps were represented in the proof in a very coarse manner, amounting
to gaps in the proof. For example, when ‘let’ expressions were expanded in a formula, the only
information present in the proof would be the formula before and after ‘let’ expansion.

When extending veriT to generate more detailed proofs, we were able to reuse its existing
proof module and proof format [BFT11]. A proof is a list of inferences, each of which consists of
an identifier (e.g., .c0), the name of the rule, the identifiers of the dependencies, and the derived
clause. The use of identifiers makes it possible to represent proofs as DAGs. We extended
the format with the inference rules of Sect. 6.1. The rules that augment the context take a
sequence of inferences—a subproof—as a justification. The subproof occurs within the scope of
the extended context. Following this scheme, the skolemization proof for the formula ¬∀x. p(x)

from Example 6.2 is presented as

(.c0 (Sko_All :conclusion ((∀x. p(x)) ' p(εx. ¬ p(x)))

:args (x 7→ (εx. ¬ p(x)))

:subproof ((.c1 (Refl :conclusion (x ' (εx. ¬ p(x)))))

(.c2 (Cong :clauses (.c1) :conclusion (p(x) ' p(εx. ¬ p(x))))))))

(.c3 (Cong :clauses (.c0) :conclusion ((¬∀x. p(x)) ' ¬ p(εx. ¬ p(x)))))

Formerly, no details of these transformations would be recorded. The proof would have contained
only the original formula and the skolemized result, regardless of how many quantifiers appeared
in the formula.

In contrast with the abstract proof module described in Sect. 7.1, veriT leaves Refl steps im-
plicit for judgments of the form Γ B t ' t. The other inference rules are generalized to cope with
missing Refl judgments. In addition, when printing proofs, the proof module can automatically
replace terms in the inferences with some other terms. This is necessary for transformations such
as skolemization and ‘if–then–else’ elimination. We must apply a substitution in the replaced
term if the original term contains variables. In veriT, efficient data structures are available to
perform this.

Transformations

The implementation of contextual recursion uses a single global context, augmented before pro-
cessing a subterm and restored afterwards. The context consists of a set of fixed variables, a
substitution, and a polarity. In our setting, the substitution satisfies the side conditions by con-
struction. If the context is empty, the result of processing a subterm is cached. For skolemization,
a separate cache is used for each polarity. No caching is attempted under binders.

Invoking process on a term returns the identifier of the inference at the root of its trans-
formation proof in addition to the processed term. These identifiers are threaded through the
recursion to connect the proof. The proofs produced by instances of contextual recursion are
inserted into the larger resolution proof produced by veriT. This is achieved through an inference
of the form

88

7.3. Implementation

ϕ D
Taut'

¬ (ϕ ' ψ) ∨ ¬ϕ ∨ ψ
Resolve

ψ

where ϕ is the original formula, ψ is the processed formula, and D is a derivation of B ϕ ' ψ.
The derivation D may itself depend on instances of rule TautT , each with its own proof of the
side condition that must also be included in the overall proof.

Transformations performing theory simplification were straightforward to port to the new
framework: Their build-app functions simply apply rewrite rules until a fixpoint is reached. Port-
ing transformations that interact with binders required special attention in handling the context
and producing proofs. Fortunately, most of these aspects are captured by the inference system
and the abstract contextual recursion framework, where they can be studied independently of
the implementation.

Some transformations are performed outside of the framework. Proofs of CNF transformation
are expressed using the inference rules of veriT’s underlying SAT solver, so that any tool that can
reconstruct SAT proofs can also reconstruct these proofs. Simplification based on associativity
and commutativity of function symbols is implemented as a dedicated procedure, for efficiency
reasons (Sect. 7.1.5). It currently produces coarse-grained proofs.

Evaluation

To evaluate the impact of the new contextual recursion algorithm and of producing detailed
proofs, we compare the performance of different configurations of veriT. Our experimental data
is available online.1 We distinguish three configurations. Basic only applies transformations for
which the old code provided some (coarse-grained) proofs. Extended also applies transforma-
tions for which the old code did not provide any proofs, whereas the new code provides detailed
proofs. Complete applies all transformations available, regardless of whether they produce
proofs.

More specifically, Basic applies the transformations for ‘let’ expansion, skolemization, elimi-
nation of quantifiers based on one-point rules, elimination of ‘if–then–else’, theory simplification
for rewriting n-ary symbols as binary, and elimination of equivalences and exclusive disjunctions
with quantifiers in subterms. Extended adds Boolean and arithmetic simplifications to the
transformations performed by Basic. Complete performs global rewriting simplifications and
symmetry breaking in addition to the transformations in Extended.

The evaluation was carried out on two main sets of benchmarks from SMT-LIB [BFT15]2: the
20 916 benchmarks, labeled as satisfiable or unsatisfiable, in the quantifier-free (QF) categories
QF_ALIA, QF_AUFLIA, QF_IDL, QF_LIA, QF_LRA, QF_RDL, QF_UF, QF_UFIDL,
QF_UFLIA, and QF_UFLRA; and the 30 250 benchmarks labeled as unsatisfiable in the non-
QF categories AUFLIA, AUFLIRA, UF, UFIDL, UFLIA, and UFLRA. The categories with

1http://matryoshka.gforge.inria.fr/pubs/processing/
2As of February 2017.

89

http://matryoshka.gforge.inria.fr/pubs/processing/

Chapter 7. Proof-producing contextual recursion

bit vectors and nonlinear arithmetic are not supported by veriT. Since veriT cannot produce
models for formulas with quantifiers, only unsatisfiable problems were considered for this kind
of benchmarks.

Our experiments were conducted on servers equipped with two Intel Xeon E5-2630 v3 pro-
cessors, with eight cores per processor, and 126 GB of memory. Each run of the solver uses a
single core. The time limit was set to 30 s, a reasonable value for interactive use within a proof
assistant.

The tables below indicate the number of benchmark problems solved by each configuration
for the quantifier-free and non-quantifier-free benchmarks:

Without proofs With proofs
QF Old code New code Old code New code

Basic 13 489 13 496 13 360 13 352
Extended 13 539 13 537 N/A 13 414
Complete 13 826 13 819 N/A N/A

Without proofs With proofs
Non-QF Old code New code Old code New code

Basic 28 746 28 762 28 744 28 766
Extended 28 785 28 852 N/A 28 857
Complete 28 759 28 794 N/A N/A

These results indicate that the new generic contextual recursion algorithm and the produc-
tion of detailed proofs do not impact performance negatively compared with the old code and
coarse-grained proofs. Moreover, allowing Boolean and arithmetic simplifications leads to some
improvements. We expect that generating proofs for the global transformations would lead to
substantial improvements on quantifier-free problems. On benchmarks with quantifiers, as the
experimental results indicate (e.g. the new code solves slightly more problems than the old one
in the proof-producing configurations), it is very hard to predict the impact of novel techniques
due to the nature of heuristic instantiation. This way, marginal changes such as these observed
do not weaken our claim that there is no negative impact on performance by the production of
detailed proofs.

90

Chapter 8

Conclusions

Our first contribution in this thesis has been the introduction of CCFV, a decision procedure
for E-ground (dis)unification. We have shown how the main instantiation techniques of SMT
solving may be based on it. We also discussed how to efficiently implement CCFV in a CDCL(T)
solver, a crucial aspect in our field of work. Our experimental evaluation shows that CCFV

leads to significant improvements in the solvers CVC4 and veriT, making the former surpass
the state-of-the-art in instantiation based SMT solving and the latter competitive in several
benchmark libraries. The calculi presented are very general, allowing for different strategies and
optimizations, as previously discussed.

There are three directions in which the work presented here can be improved: the CCFV

solving, the reach of CCFV, and the instantiation techniques built on top of it. A direction for
improving the solving is to use lemma learning in the depth-first CCFV, in a similar manner as
SAT solvers do. When a branch fails to produce a solution and is discarded, analyzing the literals
which led to the conflict can allow backjumping rather than simple backtracking, thus further
reducing the solution search space. The Complementary Congruence Closure introduced by
Backeman and Rümmer [BR15a] could be extended to perform such an analysis. More generally,
we believe that making CCFV incremental would allow significant performance gains, as it does
for theory solvers. A starting point would be to build on techniques such as those described by de
Moura and Bjørner [dMB07] for performing incremental E -matching in Z3. The reach of CCFV

can be extended by going beyond equational first-order logic. To support other theories the calculi
have to be augmented with rules for the new interpreted symbols. To handle linear arithmetic,
for instance, CCFV has to be able to perform AC1 unification (unification modulo associativity,
commutativity and additive identity). Practical implementations will also require the ground
solver to provide efficient entailment checks with relation to the new interpreted symbols, as it
does for equality. Moreover, since decidability is easily lost when combining theories in quantified
logic, a good balance must be achieved between decision procedures for specific fragments, such
as the essentially uninterpreted fragment described by Ge and de Moura [GdM09], and effective
heuristics for incomplete settings. Besides theory reasoning, higher-order unification could also
be tackled by CCFV. The calculi would need to account for partial applications, functional

91

Chapter 8. Conclusions

variables, and lambda abstractions. This would allow SMT solvers to natively handle higher-
order problems, thus avoiding completeness and performance issues with clumsy encodings into
first-order logic. Yet another possible extension of CCFV is to handle rigid E -unification, so it
could be integrated into tableaux and sequent calculi based techniques such as BREU [BR15b]
or conflict resolution [SP16]. This amounts to having non-ground equalities in E, which means
significantly changing how CCFV works now. It would, however, allow integrating an efficient
goal-oriented procedure into calculi that require solving E -unification problems.

CCFV can be seen as a first step towards a “theory solver” for quantified formulas to be
integrated into a CDCL(T) solver. Instantiation techniques built on top of CCFV would evaluate
the candidate model with quantified formulas and:

i) provide a finite-model when it exists,

ii) derive instances refuting the candidate when they exist,

iii) propagate relevant instantiations and

iv) be incremental with relation to propositional assignments.

The incrementality depends on the implementation of CCFV. Conflict based instantiation par-
tially achieves (ii) and (iii), while trigger based instantiation fits into (iii) and model based
instantiation somewhat into (i) and (ii). How to extend the instantiation techniques in order to
fully accomplish these goals remains an open problem. A complete conflict based instantiation
technique, at least with relation to equational first-order logic, could be achieved by considering
quantified formulas simultaneously instead of independently, i.e. finding substitutions σ such
that

E |= ¬ψ1σ ∨ · · · ∨ ¬ψmσ, with Q = {∀x̄n1 . ψ1, . . . , ∀x̄nm . ψm}

Techniques from tableaux and superposition calculi, which natively consider quantified formulas
simultaneously, could be combined with CCFV for solving the entailment above.

Our second contribution was to introduce a framework to represent and generate proofs of
formula processing and its implementation in veriT and Isabelle/HOL. The framework centralises
the subtle issue of manipulating bound variables and substitutions soundly and efficiently, and
it is flexible enough to accommodate many interesting transformations. Although it was imple-
mented in an SMT solver, there appears to be no intrinsic limitation that would prevent its use in
other kinds of first-order, or even higher-order, automatic provers. The framework covers many
preprocessing techniques and can be part of a larger toolbox. It allows veriT, whose detailed
proofs have been one of its defining features, to produce more detailed justifications than ever.
However, there are still some global transformations for which the proofs are nonexistent or leave
much to be desired. In particular, supporting rewriting based on global assumptions would be
essential for proof-producing inprocessing, and symmetry breaking would be interesting in its
own right. To support these transformations our notion of context would have to be extended,
as well as the operations that are allowed to be performed on terms, in such a way that we

92

can go beyond the replacement of equals by equals. The framework can also be extended to
handle different language constructs, such as lambda abstractions. Given the generality of the
processing calculus and the proof-producing algorithm, operations such as beta-reduction can be
easily integrated. The latter, for instance, is merely a variation of ‘let’ expansion.

Our focus here has been in the production of detailed proofs, aiming to guarantee proof
checking to have reasonable complexity and thus facilitate effective implementations of proof
checkers. A promising direction is also to reconstruct the detailed proofs in proof assistants,
which provide trustworthy, machine-checkable formal proofs of theorems. A general challenge
is to perform within the proof assistants the necessary reasoning to check the proofs. For some
theories, such as non-linear arithmetic, this can be quite challenging. Once possible, however,
fully reconstructing proofs into proof assistants would greatly increase the overall confidence on
the results of automatic solvers, thus avoiding the need to trust software that mostly rely on
testing to perform sound logic reasoning.

In conclusion, we believe that our contributions are beneficial to the state-of-the-art of SMT
solving (and consequentially also of first-order theorem proving). Moreover, given that both the
frameworks presented are quite general and extensible, we expect them to serve as the starting
point for several more techniques for instantiation and proof production in SMT solving, pushing
solvers into tackling ever more expressive problems and producing more trustworthy results.

93

Bibliography

[AKW09] Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach. “Superposition Mod-
ulo Linear Arithmetic SUP(LA)”. In: Frontiers of Combining Systems (FroCoS).
Ed. by Silvio Ghilardi and Roberto Sebastiani. Vol. 5749. Lecture Notes in Com-
puter Science. Springer, 2009, pp. 84–99.

[AFG+11] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent
Théry, and Benjamin Werner. “A Modular Integration of SAT/SMT Solvers to
Coq through Proof Witnesses”. In: Certified Programs and Proofs. Ed. by Jean-
Pierre Jouannaud and Zhong Shao. Vol. 7086. Lecture Notes in Computer Science.
Springer, 2011, pp. 135–150.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. New York, NY,
USA: Cambridge University Press, 1998.

[BS01] Franz Baader and Wayne Snyder. “Unification Theory”. In: Handbook of Automated
Reasoning. Ed. by John Alan Robinson and Andrei Voronkov. Elsevier and MIT
Press, 2001, pp. 445–532.

[BG94] Leo Bachmair and Harald Ganzinger. “Rewrite-Based Equational Theorem Prov-
ing with Selection and Simplification”. In: Journal of Logic and Computation 4.3
(1994), pp. 217–247.

[BGW94] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. “Refutational theorem
proving for hierarchic first-order theories”. In: Applicable Algebra in Engineering,
Communication and Computing 5.3 (1994), pp. 193–212.

[BTV03] Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. “Abstract Congruence Clo-
sure”. English. In: Journal of Automated Reasoning 31.2 (2003), pp. 129–168.

[BR15a] Peter Backeman and Philipp Rümmer. “Efficient Algorithms for Bounded Rigid E-
unification”. In: Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX). Ed. by Hans de Nivelle. Vol. 9323. Lecture Notes in Computer
Science. Springer, 2015, pp. 70–85.

94

BIBLIOGRAPHY

[BR15b] Peter Backeman and Philipp Rümmer. “Theorem Proving with Bounded Rigid
E-Unification”. In: Proc. Conference on Automated Deduction (CADE). Ed. by
Amy Felty and Aart Middeldorp. Vol. 9195. Lecture Notes in Computer Science.
Springer, 2015.

[BRK+15] Kshitij Bansal, Andrew Reynolds, Tim King, Clark Barrett, and Thomas Wies.
“Deciding Local Theory Extensions via E-matching”. English. In: Computer Aided
Verification (CAV). Ed. by Daniel Kroening and Corina S. Păsăreanu. Vol. 9207.
Lecture Notes in Computer Science. Springer International Publishing, 2015, pp. 87–
105.

[Bar16] Haniel Barbosa. “Efficient Instantiation Techniques in SMT (Work In Progress)”.
In: Practical Aspects of Automated Reasoning (PAAR). Ed. by Pascal Fontaine,
Stephan Schulz, and Josef Urban. Vol. 1635. CEURWorkshop Proceedings. CEUR-
WS.org, 2016, pp. 1–10.

[BBF17] Haniel Barbosa, Jasmin Christian Blanchette, and Pascal Fontaine. “Scalable Fine-
Grained Proofs for Formula Processing”. In: Proc. Conference on Automated Deduc-
tion (CADE). Ed. by Leonardo de Moura. Vol. 10395. Lecture Notes in Computer
Science. Springer, 2017, pp. 398–412.

[BFR17] Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. “Congruence Closure with
Free Variables”. In: Tools and Algorithms for Construction and Analysis of Systems
(TACAS). Ed. by Axel Legay and Tiziana Margaria. Vol. 10206. Lecture Notes in
Computer Science. 2017, pp. 214–230.

[BW05] Henk Barendregt and Freek Wiedijk. “The challenge of computer mathematics”. In:
Philosophical Transactions of the Royal Society of London—Series A, Mathematical
and Physical Sciences 363.1835 (2005), pp. 2351–2375.

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. “CVC4”. In: Com-
puter Aided Verification (CAV). Ed. by Ganesh Gopalakrishnan and Shaz Qadeer.
Springer, 2011, pp. 171–177.

[BFT15] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Ver-
sion 2.5. Tech. rep. Available at www.SMT-LIB.org. Department of Computer Sci-
ence, The University of Iowa, 2015.

[BSST09] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. “Satisfiabil-
ity Modulo Theories”. In: Handbook of Satisfiability. Ed. by Armin Biere, Marijn
J. H. Heule, Hans van Maaren, and Toby Walsh. Vol. 185. Frontiers in Artificial
Intelligence and Applications. IOS Press, 2009. Chap. 26, pp. 825–885.

95

BIBLIOGRAPHY

[BBW15] Peter Baumgartner, Joshua Bax, and Uwe Waldmann. “Beagle – A Hierarchic
Superposition Theorem Prover”. In: Proc. Conference on Automated Deduction
(CADE). Ed. by Amy Felty and Aart Middeldorp. Lecture Notes in Artificial In-
telligence. To appear. Springer, 2015.

[BW13] Peter Baumgartner and Uwe Waldmann. “Hierarchic Superposition with Weak
Abstraction”. English. In: Proc. Conference on Automated Deduction (CADE). Ed.
by MariaPaola Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, pp. 39–57.

[Bec98] Bernhard Beckert. “Ridig E-Unification”. In: Automated Deduction: A Basis for
Applications. Foundations: Calculi and Methods. Ed. by Wolfgang Bibel and P. H.
Schimidt. Vol. 1. Bluwer Academic Publishers, 1998.

[BN00] Stefan Berghofer and Tobias Nipkow. “Proof Terms for Simply Typed Higher Order
Logic”. In: Theorem Proving in Higher Order Logics (TPHOLs). Ed. by Mark Aa-
gaard and John Harrison. Vol. 1869. Lecture Notes in Computer Science. Springer,
2000, pp. 38–52.

[BFT11] Frédéric Besson, Pascal Fontaine, and Laurent Théry. “A Flexible Proof Format for
SMT: a Proposal”. In: Workshop on Proof eXchange for Theorem Proving (PxTP).
2011.

[BBF+16] Jasmin Christian Blanchette, Sascha Böhme, Mathias Fleury, Steffen Juilf Smolka,
and Albert Steckermeier. “Semi-intelligible Isar Proofs from Machine-Generated
Proofs”. In: Journal of Automated Reasoning 56.2 (2016), pp. 155–200.

[BFSW11] Sascha Böhme, Anthony C. J. Fox, Thomas Sewell, and Tjark Weber. “Reconstruc-
tion of Z3’s Bit-Vector Proofs in HOL4 and Isabelle/HOL”. In: Certified Programs
and Proofs. Ed. by Jean-Pierre Jouannaud and Zhong Shao. Vol. 7086. Lecture
Notes in Computer Science. Springer, 2011, pp. 183–198.

[BW10] Sascha Böhme and Tjark Weber. “Fast LCF-Style Proof Reconstruction for Z3”.
In: ITP 2010. Ed. by Matt Kaufmann and Lawrence Paulson. Vol. 6172. Lecture
Notes in Computer Science. Springer, 2010, pp. 179–194.

[BdODF09] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine.
“veriT: An Open, Trustable and Efficient SMT-Solver”. In: Proc. Conference on Au-
tomated Deduction (CADE). Ed. by Renate A. Schmidt. Vol. 5663. Lecture Notes
in Computer Science. Springer, 2009, pp. 151–156.

[Bur13] Guillaume Burel. “A Shallow Embedding of Resolution and Superposition Proofs
into the λΠ-Calculus Modulo”. In: Workshop on Proof eXchange for Theorem Prov-
ing (PxTP). Ed. by Jasmin Christian Blanchette and Josef Urban. Vol. 14. EPiC
Series in Computing. EasyChair, 2013, pp. 43–57.

96

BIBLIOGRAPHY

[CD07] Denis Cousineau and Gilles Dowek. “Embedding Pure Type Systems in the Lambda-
Pi-Calculus Modulo”. In: Typed Lambda Calculi and Applications (TLCA). Ed.
by Simona Ronchi Della Rocca. Vol. 4583. Lecture Notes in Computer Science.
Springer, 2007, pp. 102–117.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. “A Machine Program for
Theorem-proving”. In: Commun. ACM 5.7 (July 1962), pp. 394–397.

[dMB08a] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Proofs and Refutations, and
Z3”. In: Logic for Programming, Artificial Intelligence, and Reasoning (LPAR)
Workshops. Ed. by Piotr Rudnicki, Geoff Sutcliffe, Boris Konev, Renate A. Schmidt,
and Stephan Schulz. Vol. 418. CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[dMB08b] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”.
In: Tools and Algorithms for Construction and Analysis of Systems (TACAS). Ed.
by C. R. Ramakrishnan and Jakob Rehof. Vol. 4963. Lecture Notes in Computer
Science. Springer, 2008, pp. 337–340.

[dMJ13] Leonardo Mendonça de Moura and Dejan Jovanovic. “A Model-Constructing Sat-
isfiability Calculus”. In: Verification, Model Checking, and Abstract Interpretation
(VMCAI). 2013, pp. 1–12.

[dMB07] Leonardo de Moura and Nikolaj Bjørner. “Efficient E-Matching for SMT Solvers”.
In: Proc. Conference on Automated Deduction (CADE). Ed. by Frank Pfenning.
Vol. 4603. Lecture Notes in Computer Science. Springer, 2007, pp. 183–198.

[dMB08c] Leonardo de Moura and Nikolaj Bjørner. “Engineering DPLL(T) + Saturation”. In:
International Joint Conference on Automated Reasoning (IJCAR). Ed. by Alessan-
dro Armando, Peter Baumgartner, and Gilles Dowek. Vol. 5195. Lecture Notes in
Computer Science. Springer, 2008, pp. 475–490.

[dNiv02] Hans de Nivelle. “Extraction of Proofs from the Clausal Normal Form Transforma-
tion”. In: Computer Science Logic (CSL). Ed. by Julian Bradfield. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2002, pp. 584–598.

[dNiv05] Hans de Nivelle. “Translation of resolution proofs into short first-order proofs with-
out choice axioms”. In: Information and Computation 199.1 (2005), pp. 24–54.

[DV96] Anatoli Degtyarev and Andrei Voronkov. “The Undecidability of Simultaneous
Rigid E-Unification”. In: Theor. Comput. Sci. 166.1&2 (1996), pp. 291–300.

[DV98] Anatoli Degtyarev and Andrei Voronkov. “What You Always Wanted to Know
about Rigid E-Unification”. In: Journal of Automated Reasoning 20.1 (1998), pp. 47–
80.

[DV01] Anatoli Degtyarev and Andrei Voronkov. “Equality Reasoning in Sequent-Based
Calculi”. In: Handbook of Automated Reasoning. Ed. by John Alan Robinson and
Andrei Voronkov. Elsevier, 2001, pp. 611–706.

97

BIBLIOGRAPHY

[DFLM13] David Déharbe, Pascal Fontaine, Daniel Le Berre, and Bertrand Mazure. “Comput-
ing Prime Implicants”. In: Formal Methods In Computer-Aided Design (FMCAD).
IEEE, 2013, pp. 46–52.

[DFMP11] David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo.
“Exploiting Symmetry in SMT Problems”. In: Proceedings of the 23rd International
Conference on Automated Deduction. Proc. Conference on Automated Deduction
(CADE). Wrocław, Poland: Springer-Verlag, 2011, pp. 222–236.

[DFP11] David Déharbe, Pascal Fontaine, and Bruno Woltzenlogel Paleo. “Quantifier Infer-
ence Rules for SMT proofs”. In: Workshop on Proof eXchange for Theorem Proving
(PxTP). 2011.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. “Simplify: A Theorem Prover for
Program Checking”. In: J. ACM 52.3 (2005), pp. 365–473.

[DCKP13] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich. “Adding
Decision Procedures to SMT Solvers using Axioms with Triggers”. 2013.

[Dut14] Bruno Dutertre. “Yices 2.2”. English. In: Computer Aided Verification (CAV). Ed.
by Armin Biere and Roderick Bloem. Vol. 8559. Lecture Notes in Computer Science.
Springer International Publishing, 2014, pp. 737–744.

[DdM06] Bruno Dutertre and Leonardo de Moura. “A Fast Linear-Arithmetic Solver for
DPLL(T)”. English. In: Computer Aided Verification (CAV). Ed. by Thomas Ball
and Robert B. Jones. Vol. 4144. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2006, pp. 81–94.

[EHR+16] Gabriel Ebner, Stefan Hetzl, Giselle Reis, Martin Riener, Simon Wolfsteiner, and
Sebastian Zivota. “System Description: GAPT 2.0”. In: International Joint Confer-
ence on Automated Reasoning (IJCAR). Ed. by Nicola Olivetti and Ashish Tiwari.
Vol. 9706. Lecture Notes in Computer Science. Springer, 2016, pp. 293–301.

[EKK+11] Andreas Eggers, Evgeny Kruglov, Stefan Kupferschmid, Karsten Scheibler, Tino
Teige, and Christoph Weidenbach. “Superposition Modulo Non-linear Arithmetic”.
In: Frontiers of Combining Systems (FroCoS). Ed. by Cesare Tinelli and Viorica
Sofronie-Stokkermans. Vol. 6989. Lecture Notes in Computer Science. Springer,
2011, pp. 119–134.

[EKK+16] Burak Ekici, Guy Katz, Chantal Keller, Alain Mebsout, Andrew Reynolds, and
Cesare Tinelli. “Extending SMTCoq, a Certified Checker for SMT (Extended Ab-
stract)”. In: Hammers for Type Theories. Ed. by Jasmin Christian Blanchette and
Cezary Kaliszyk. Vol. 210. EPTCS. 2016, pp. 21–29.

[Fit96] Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag,
1996.

98

BIBLIOGRAPHY

[FMM+06] Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto, and Alwen
Fernanto Tiu. “Expressiveness + Automation + Soundness: Towards Combining
SMT Solvers and Interactive Proof Assistants”. In: Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS). Ed. by Holger Hermanns and Jens
Palsberg. Vol. 3920. Lecture Notes in Computer Science. Springer, 2006, pp. 167–
181.

[GBT07] Yeting Ge, Clark Barrett, and Cesare Tinelli. “Solving Quantified Verification Con-
ditions Using Satisfiability Modulo Theories”. English. In: Proc. Conference on Au-
tomated Deduction (CADE). Ed. by Frank Pfenning. Vol. 4603. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2007, pp. 167–182.

[GdM09] Yeting Ge and Leonardo de Moura. “Complete Instantiation for Quantified For-
mulas in Satisfiabiliby Modulo Theories”. In: Computer Aided Verification (CAV).
Ed. by Ahmed Bouajjani and Oded Maler. Vol. 5643. Lecture Notes in Computer
Science. Springer, 2009, pp. 306–320.

[Gie01] Martin Giese. “Incremental Closure of Free Variable Tableaux”. English. In: Inter-
national Joint Conference on Automated Reasoning (IJCAR). Ed. by Rajeev Goré,
Alexander Leitsch, and Tobias Nipkow. Vol. 2083. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2001, pp. 545–560.

[Gie02] Martin Giese. “A Model Generation Style Completeness Proof for Constraint Tableaux
with Superposition”. English. In: Automated Reasoning with Analytic Tableaux
and Related Methods (TABLEAUX). Ed. by Uwe Egly and ChritianG. Fermüller.
Vol. 2381. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2002,
pp. 130–144.

[GM93] M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

[GMW79] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh
LCF: A Mechanised Logic of Computation. Vol. 78. LNCS. Springer, 1979.

[Gou93] Jean Goubault. “A rule-based algorithm for rigid E-unification”. In: Computational
Logic and Proof Theory: Third Kurt Gödel Colloquium (KGC). Ed. by Georg Got-
tlob, Alexander Leitsch, and Daniele Mundici. Springer, 1993, pp. 202–210.

[Gra13] Stéphane Graham-Lengrand. “Psyche: A Proof-Search Engine Based on Sequent
Calculus with an LCF-Style Architecture”. In: Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX). Ed. by Didier Galmiche and Do-
minique Larchey-Wendling. Vol. 8123. Lecture Notes in Computer Science. Springer,
2013, pp. 149–156.

99

BIBLIOGRAPHY

[HBR+15] Liana Hadarean, Clark W. Barrett, Andrew Reynolds, Cesare Tinelli, and Morgan
Deters. “Fine Grained SMT Proofs for the Theory of Fixed-Width Bit-Vectors”.
In: Logic for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by
Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov. Vol. 9450.
Lecture Notes in Computer Science. Springer, 2015, pp. 340–355.

[Häh01] Reiner Hähnle. “Tableaux and Related Methods”. In: Handbook of Automated Rea-
soning. Ed. by Alan Robinson and Andrei Voronkov. Amsterdam, The Netherlands,
The Netherlands: Elsevier Science Publishers B. V., 2001, pp. 1853–1964.

[HHP87] Robert Harper, Furio Honsell, and Gordon D. Plotkin. “A Framework for Defining
Logics”. In: IEEE Computer Society, 1987, pp. 194–204.

[HLRR13] Stefan Hetzl, Tomer Libal, Martin Riener, and Mikheil Rukhaia. “Understanding
Resolution Proofs through Herbrand’s Theorem”. In: Automated Reasoning with
Analytic Tableaux and Related Methods (TABLEAUX). Ed. by Didier Galmiche
and Dominique Larchey-Wendling. Vol. 8123. Lecture Notes in Computer Science.
Springer, 2013, pp. 157–171.

[JdM12] Dejan Jovanović and Leonardo de Moura. “Solving Non-linear Arithmetic”. En-
glish. In: International Joint Conference on Automated Reasoning (IJCAR). Ed.
by Bernhard Gramlich, Dale Miller, and Uli Sattler. Vol. 7364. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2012, pp. 339–354.

[KBT+16] Guy Katz, ClarkW. Barrett, Cesare Tinelli, Andrew Reynolds, and Liana Hadarean.
“Lazy proofs for DPLL(T)-based SMT solvers”. In: Formal Methods In Computer-
Aided Design (FMCAD). Ed. by Ruzica Piskac and Muralidhar Talupur. IEEE,
2016, pp. 93–100.

[KV13] Laura Kovács and Andrei Voronkov. “First-Order Theorem Proving and Vampire”.
English. In: Computer Aided Verification (CAV). Ed. by Natasha Sharygina and
Helmut Veith. Vol. 8044. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2013, pp. 1–35.

[LMO05] K. Rustan M. Leino, Madan Musuvathi, and Xinming Ou. “A Two-Tier Technique
for Supporting Quantifiers in a Lazily Proof-Explicating Theorem Prover”. In: Tools
and Algorithms for Construction and Analysis of Systems (TACAS). Ed. by Nicolas
Halbwachs and Lenore D. Zuck. Vol. 3440. Lecture Notes in Computer Science.
Springer, 2005, pp. 334–348.

[LP16] K. Rustan M. Leino and Clément Pit-Claudel. “Trigger Selection Strategies to
Stabilize Program Verifiers”. In: Computer Aided Verification (CAV). Ed. by Swarat
Chaudhuri and Azadeh Farzan. Vol. 9779. Lecture Notes in Computer Science.
Springer, 2016, pp. 361–381.

100

BIBLIOGRAPHY

[MBG06] Sean McLaughlin, Clark Barrett, and Yeting Ge. “Cooperating Theorem Provers:
A Case Study Combining HOL-Light and CVC Lite”. In: Electr. Notes Theor.
Comput. Sci. 144.2 (2006), pp. 43–51.

[Mei00] Andreas Meier. “Tramp: Transformation of machine-found proofs into natural
deduction proofs at the assertion level (system description)”. In: Proc. Conference
on Automated Deduction (CADE). Ed. by David McAllester. Vol. 1831. Lecture
Notes in Computer Science. Springer, 2000, pp. 460–464.

[Mil15] Dale Miller. “Proof Checking and Logic Programming”. In: Logic-Based Program
Synthesis and Transformation (LOPSTR). Ed. by Moreno Falaschi. Vol. 9527. Lec-
ture Notes in Computer Science. Springer, 2015, pp. 3–17.

[Mos08] Michał Moskal. “Rocket-Fast Proof Checking for SMT Solvers”. In: Tools and Al-
gorithms for Construction and Analysis of Systems (TACAS). Ed. by C. R. Ra-
makrishnan and Jakob Rehof. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 486–500.

[MŁ06] Michał Moskal and Jakub Łopuszański. Fast Quantifier Reasoning With Lazy Proof
Explication. Tech. rep. Institute of Computer Science, University of Wrocław, 2006.

[MŁK08] Michał Moskal, Jakub Łopuszański, and Joseph R. Kiniry. “E-matching for Fun
and Profit”. In: Electron. Notes Theor. Comput. Sci. 198.2 (May 2008), pp. 19–35.

[Nel80] Charles Gregory Nelson. “Techniques for Program Verification”. PhD thesis. Stan-
ford, CA, USA, 1980.

[NO79] Greg Nelson and Derek C. Oppen. “Simplification by Cooperating Decision Proce-
dures”. In: ACM Trans. Program. Lang. Syst. 1.2 (Oct. 1979), pp. 245–257.

[NO80] Greg Nelson and Derek C. Oppen. “Fast Decision Procedures Based on Congruence
Closure”. In: J. ACM 27.2 (1980), pp. 356–364.

[NO07] Robert Nieuwenhuis and Albert Oliveras. “Fast congruence closure and extensions”.
In: Information and Computation 205.4 (2007). Special Issue: 16th International
Conference on Rewriting Techniques and Applications, pp. 557–580.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. “Solving SAT and SAT
Modulo Theories: From an Abstract Davis–Putnam–Logemann–Loveland Proce-
dure to DPLL(T)”. In: J. ACM 53.6 (Nov. 2006), pp. 937–977.

[NR01] Robert Nieuwenhuis and Albert Rubio. “Paramodulation-Based Theorem Proving”.
In: Handbook of automated reasoning. Ed. by Alan Robinson and Andrei Voronkov.
Vol. 1. 2001, pp. 371–443.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Vol. 2283. LNCS. Springer, 2002.

101

BIBLIOGRAPHY

[NWCS01] Andreas Nonnengart, Weidenbach, Christoph, and Stadtwald. “Computing Small
Clause Normal Forms”. In: Handbook of automated reasoning. Ed. by Alan Robinson
and Andrei Voronkov. Vol. 1. Elsevier and MIT Press, 2001, pp. 335–367.

[Pau83] Lawrence C. Paulson. “A Higher-Order Implementation of Rewriting”. In: Sci.
Comput. Program. 3.2 (1983), pp. 119–149.

[PS07] Lawrence C. Paulson and Kong Woei Susanto. “Source-Level Proof Reconstruction
for Interactive Theorem Proving”. In: Theorem Proving in Higher Order Logics
(TPHOLs). Ed. by Klaus Schneider and Jens Brandt. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 232–245.

[PWZ14] Ruzica Piskac, Thomas Wies, and Damien Zufferey. “GRASShopper - Complete
Heap Verification with Mixed Specifications”. In: Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS). Ed. by Erika Ábrahám and Klaus
Havelund. Vol. 8413. Lecture Notes in Computer Science. Springer, 2014, pp. 124–
139.

[Pug92] William Pugh. “The Omega Test: a fast and practical integer programming algo-
rithm for dependence analysis”. In: Communications of the ACM 8 (1992), pp. 4–
13.

[RBSV16] Giles Reger, Nikolaj Bjorner, Martin Suda, and Andrei Voronkov. “AVATAR Mod-
ulo Theories”. In: Global Conference on Artificial Intelligence (GCAI). Ed. by
Christoph Benzmüller, Geoff Sutcliffe, and Raul Rojas. Vol. 41. EPiC Series in
Computing. EasyChair, 2016, pp. 39–52.

[Rey16] Andrew Reynolds. “Conflicts, Models and Heuristics for Quantifier Instantiation
in SMT”. In: Vampire workshop. Ed. by Laura Kovács and Andrei Voronkov. EPiC
Series in Computing. EasyChair, 2016, pp. 1–15.

[RTdM14] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. “Finding
conflicting instances of quantified formulas in SMT”. In: Formal Methods In Computer-
Aided Design (FMCAD). IEEE, 2014, pp. 195–202.

[RTGK13] Andrew Reynolds, Cesare Tinelli, Amit Goel, and Sava Krstić. “Finite Model Find-
ing in SMT”. English. In: Computer Aided Verification (CAV). Ed. by Natasha
Sharygina and Helmut Veith. Vol. 8044. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, pp. 640–655.

[RTG+13] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and
Clark Barrett. “Quantifier Instantiation Techniques for Finite Model Finding in
SMT”. In: Proc. Conference on Automated Deduction (CADE). Ed. by Maria Paola
Bonacina. Vol. 7898. Lecture Notes in Computer Science. Springer, 2013, pp. 377–
391.

102

BIBLIOGRAPHY

[Rüm08] Philipp Rümmer. “A Constraint Sequent Calculus for First-Order Logic with Linear
Integer Arithmetic”. In: Logic for Programming, Artificial Intelligence, and Reason-
ing (LPAR). Ed. by Iliano Cervesato, Helmut Veith, and Andrei Voronkov. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 274–289.

[Rüm12] Philipp Rümmer. “E-Matching with Free Variables”. In: Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR). Ed. by Nikolaj Bjørner and Andrei
Voronkov. Vol. 7180. Lecture Notes in Computer Science. Springer, 2012, pp. 359–
374.

[Sch13] Stephan Schulz. “System Description: E 1.8”. English. In: Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR). Ed. by Ken McMillan, Aart Mid-
deldorp, and Andrei Voronkov. Vol. 8312. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, pp. 735–743.

[Seb07] Roberto Sebastiani. “Lazy Satisability Modulo Theories”. In: JSAT 3.3-4 (2007),
pp. 141–224.

[Sho84] Robert E. Shostak. “Deciding Combinations of Theories”. In: J. ACM 31.1 (Jan.
1984), pp. 1–12.

[SP16] John Slaney and Bruno Woltzenlogel Paleo. “Conflict Resolution: a First-Order
Resolution Calculus with Decision Literals and Conflict-Driven Clause Learning”.
In: CoRR abs/1602.04568 (2016).

[Stu09] Aaron Stump. “Proof Checking Technology for Satisfiability Modulo Theories”. In:
Electr. Notes Theor. Comput. Sci. 228 (2009), pp. 121–133.

[SZS04] Geoff Sutcliffe, Jürgen Zimmer, and Stephan Schulz. “TSTP Data-Exchange For-
mats for Automated Theorem Proving Tools”. In: Distributed Constraint Problem
Solving and Reasoning in Multi-Agent Systems. Ed. by Weixiong Zhang and Volker
Sorge. Vol. 112. Frontiers in Artificial Intelligence and Applications. IOS Press,
2004, pp. 201–215.

[TBR00] Ashish Tiwari, Leo Bachmair, and Harald Ruess. “Rigid E-Unification Revisited”.
In: Proc. Conference on Automated Deduction (CADE). Ed. by David McAllester.
Vol. 1831. Lecture Notes in Computer Science. Springer, 2000, pp. 220–234.

[Tse83] G. S. Tseitin. “On the Complexity of Derivation in Propositional Calculus”. In:
Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970.
Ed. by Jörg H. Siekmann and Graham Wrightson. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1983, pp. 466–483.

[Vor14] Andrei Voronkov. “AVATAR: The Architecture for First-Order Theorem Provers”.
English. In: Computer Aided Verification (CAV). Ed. by Armin Biere and Roder-
ick Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer International
Publishing, 2014, pp. 696–710.

103

BIBLIOGRAPHY

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin
Suda, and Patrick Wischnewski. “SPASS Version 3.5”. English. In: Proc. Conference
on Automated Deduction (CADE). Ed. by RenateA. Schmidt. Vol. 5663. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 140–145.

[ZWR16] Aleksandar Zeljic, Christoph M. Wintersteiger, and Philipp Rümmer. “Deciding
Bit-Vector Formulas with mcSAT”. In: Theory and Applications of Satisfiability
Testing (SAT). Ed. by Nadia Creignou and Daniel Le Berre. Vol. 9710. Lecture
Notes in Computer Science. Springer, 2016, pp. 249–266.

[ZMSZ04] Jürgen Zimmer, Andreas Meier, Geoff Sutcliffe, and Yuan Zhan. “Integrated Proof
Transformation Services”. In:Workshop on Computer-Supported Mathematical The-
ory Development. Ed. by Christoph Benzmüller and Wolfgang Windsteiger. 2004.

104

	1 Introduction
	2 Conventions and definitions
	2.1 Syntax
	2.2 Semantics
	2.3 Satisfiability

	3 Satisfiability modulo theories solving
	3.1 CDCL(T) framework
	3.2 Quantified formulas in CDCL(T)
	3.2.1 Trigger based instantiation
	3.2.2 Conflict based instantiation
	3.2.3 Model based instantiation

	3.3 Other frameworks
	3.4 Certificates

	Part I Instantiation
	4 Congruence closure with free variables
	4.1 E-ground (dis)unification
	4.1.1 Recasting instantiation techniques

	4.2 Calculus
	4.2.1 Strategy
	4.2.2 Correctness
	4.2.3 Instantiating with CCFV

	4.3 A non-backtracking CCFV
	4.3.1 Strategy

	5 Implementation
	5.1 Indexing
	5.2 Finding solutions
	5.2.1 Breadth-first CCFV
	5.2.2 Applying instantiation techniques

	5.3 Experiments

	Part II Proof Production
	6 Processing calculus
	6.1 Inference system
	6.2 Soundness
	6.3 A proof of concept checker

	7 Proof-producing contextual recursion
	7.1 The generic algorithm and its instantiations
	7.1.1 `Let' expansion
	7.1.2 Skolemization
	7.1.3 Theory simplification
	7.1.4 Combinations of transformations
	7.1.5 Scope and limitations

	7.2 Correctness
	7.3 Implementation

	8 Conclusions
	Bibliography

