
SyMT: Finding Symmetries in SMT formulas

Carlos Areces1, David Déharbe2, Pascal Fontaine3, and Ezequiel Orbe1?

1 FaMAF, U. Nacional de Córdoba (Argentina)
2 Universidade Federal do Rio Grande do Norte, (Brazil)

3 Inria, U. of Lorraine (France)

Abstract. The QF UF category of the SMT-LIB test set contains many
formulas with symmetries, and breaking these symmetries results in an
important speedup [8]. We here propose SyMT, a simple tool based on
graph automorphism detection algorithms to find out symmetries in SMT
formulas. SyMT helps SMT users by highlighting the symmetries in their
formulas, giving thus hints on how they can improve them to enforce the
SMT solver to examine one path out of many symmetric ones in the
search tree. The classic propositional symmetry breaking technique can
be lifted to SMT and yield a generic technique to break the symmetries
found by SyMT.
Experiments on a large part of the SMT-LIB show that symmetries are
pervasive in most categories.

Consider a propositional formula ϕ(p, q) with propositional variables p and q,
and symmetric by permutation of p and q. Propositional symmetry breaking [12]
eliminates symmetry, e.g. by adding clause p ⇒ q, since there is a Boolean
model of ϕ(p, q) if and only if there is a model such that p ⇒ q. It is not
necessary to search for models such that p ∧ ¬q, and so the search space can
be reduced. Now consider the first-order formula ϕ(f(a) = f(b), a = b) with the
standard interpretation of equality. It is clear that there exists no model such
that f(a) 6= f(b) ∧ a = b holds, although f(a) = f(b) ∧ a 6= b is satisfiable;
if ϕ(p, q) has only models such that exactly one proposition in {p, q} is true,
ϕ(f(a) = f(b), a = b) ∧ (f(a) = f(b) ⇒ a = b) is unsatisfiable. This simple
example shows it is not sound to break symmetry of an SMT4 formula based
on the symmetry of its propositional structure alone. Essentially the problem is
that the abstraction does not take the theory into account. However, we show
in the paper that it is sound to break symmetries stemming from permutation
of uninterpreted symbols, similarly to what is done for propositional logic.

As previous results suggest [8], exploiting symmetries in SMT formulas can
lead to an impressive decrease in the size of the search space, and thus to a con-
siderable increase in efficiency. Techniques described in [8] are, however, highly

? This work has been partially supported by the European Union Seventh Framework
Programme under grant agreement no. 295261 (MEALS), and by CNPq/INRIA
project SMT-SAVeS, and CNPq grant 573964/2008-4 (National Institute of Science
and Technology for Software Engineering—INES).

4 SMT stands for Satisfiability Modulo Theories, see [4] for a thorough introduction.

1

heuristic and vulnerable to formula rewriting. Graph automorphism detection
algorithms [11,9,10] have been used to find symmetries in propositional formulas.
We provide a tool, based on those techniques, to discover symmetries in SMT
formulas. The tool does not break the symmetries automatically though. There
would indeed exist many heuristic choices for symmetry breaking and the SMT
user is in the best position to make the right choices, based on the application.

Outline. We first give a formal basis for symmetry breaking in SMT, then present
the implementation of SyMT, our tool for detecting symmetries in SMT formu-
las. Some statistics on symmetry detection on a large part of the SMT-LIB [5]
are given. They clearly show that (1) graph automorphism algorithms scale for
SMT formulas, and (2) the SMT-LIB contain many highly symmetric formulas.

1 Symmetries in SMT

We assume knowledge of basic notions of permutation group theory, such as
generator and cyclic form. We use the standard notions of multi-sorted logic,
term, formula, and interpretation commonly used in the context of SMT. A the-
ory is a set of interpretations. Consider a finite set S of uninterpreted symbols
(constants, functions or predicates), and a bijective function σ on S, that maps
every symbol to a symbol of the same sort (i.e., arity and sorts of arguments
and image should match). Function σ extends naturally to terms and formulas,
and tσ denotes σ applied to term or formula t, just like a higher-order substitu-
tion would, considering symbols in S as variables. σ can also be applied on an
interpretation I to yield interpretation Iσ similar to I except that Iσ[s′] = I[s]
whenever sσ = s′. The identity function is denoted σI .

We say that σ is a symmetry for formula ϕ if ϕσ is syntactically equal to
ϕ up to satisfiability preserving rewritings, e.g. using commutativity of some
interpreted symbols. Notice that if σ is a symmetry for ϕ, so is any of its powers
σi, and in particular σ−1 is also a symmetry of ϕ since there exists n such that
σn = σI . The case where σ is its own inverse (σ2 = σI) is a particular, though
extremely frequent, case. It occurs when there is a group that contains all per-
mutations of elements in a subset of S. In our experiments on the SMT-LIB test
bed, we have observed that most symmetry groups found have a set of genera-
tors that are their own inverse. Consider a symmetry σ such that σ2 = σI for a
formula ϕ. For every interpretation I of ϕ we have Iσ[ϕ] = I[ϕ] (using straight-
forward structural induction). Consider now a set of atoms (not necessarily sim-
ple propositional variables) p1, . . . pn and their image q1 = p1σ, . . . qn = pnσ. If
ϕ is satisfiable in a model M then there exists a model of ϕ that furthermore
satisfies the following formulas for i ∈ {1..n}:

ψi =def

(∧
1≤j<i

pj ≡ qj
)
⇒ (pi ⇒ qi).

This model is indeed eitherM orMσ. Assume k is the smallest value for which
M[pk] 6=M[qk], and consider ψk. IfM[pk] = ⊥ andM[qk] = > thenM satisfies

2

ψk, as well as all ψi with i 6= k. Now, if M[pk] = > and M[qk] = ⊥ then Mσ
is a model of ϕ such that Mσ[pi] = Mσ[qi] for i < k and Mσ[pk] = > and
Mσ[qk] = ⊥. The model Mσ of ϕ thus satisfies ψi for i ∈ {1..n}.

It is well known (see, e.g., [12]) that the formulas ψi can serve to break
symmetry for propositional formulas. The above shows that this extends to SMT.
This leaves out, however, many choices for the set of atoms pi: the insight of the
SMT user is usually necessary to make the best choice.

2 SyMT Implementation

SyMT is a command line tool implemented in C that detects symmetries in
SMT formulas, taking into account the commutativity of conjunction, disjunc-
tion, addition, multiplication and equality. Given an input SMT formula, SyMT
proceeds by creating a colored graph from it and then uses a graph automor-
phism component to detect the generators of the automorphism group of the
colored graph. In particular, SyMT uses Saucy 3.0 [10] as the graph automor-
phism component. Integration with Saucy is done via Saucy’s C API. SyMT also
provides simplification capabilities on the input formulas, some of which involve
using theory reasoning (and thus may unfortunately fail on large instances).
Simplification of the input formula is important because it may uncover hidden
symmetries and remove trivial symmetries, e.g., symmetries that do not involve
uninterpreted symbols.

Example 1. Hereunder is the command line and output of SyMT on a formula
of the QF UF category of SMT-LIB:

./SyMT --enable-simp smt-lib2/QF UF/NEQ/NEQ004 size4.smt2

(p7 p9)(c12 c13)

(c 3 c 1)

(c 2 c 1)

(c 0 c 1)

SyMT finds four generators for the symmetry group, and prints them in cyclic
form. There is the full group of permutations of c_0, c_1, c_2, c_3, generated
by the last three generators, as well as a further symmetry that permutes unary
predicates p7 and p9, while in the same time permutes c12 and c13. This last
symmetry was not detected with the heuristic techniques of [8].

Reduction to the colored graph automorphism problem is the most success-
ful technique for detecting symmetries in propositional formulas in clausal form,
primarily due to the availability of efficient tools to detect graph automorphisms
(e.g., [11,9,10]) that are fast and easy to integrate. Several reductions from propo-
sitional formulas to colored graphs have been proposed [6,7,1], all based on the
same idea: to use the formula to construct a colored graph whose automorphism
group is isomorphic to the symmetry group of the formula. Also, extensions to
other logics, e.g., QBF [3] and modal logics [2], have been proposed, further
showing the applicability of this technique.

3

We now present the reduction algorithm to colored graphs for SMT formulas.
The reduction is as a two-stage process. First, SyMT constructs the syntax
direct acyclic graph of the formula with some additional nodes. Second, colors
are introduced, to avoid spurious symmetries. Colors are represented as natural
numbers. Let ϕ be an SMT formula. The colored graph G(ϕ) is constructed
recursively as follows (= and other predicates, and propositional symbols are
considered as functions and constants ranging over Booleans):

– Graph Construction:
1. For each symbol, add a unique symbol node.
2. For each (constant or propositional) term without argument, the root

node is the symbol node introduced above.
3. For each term f(t1, . . . , tn) of arity n > 0,

(a) Add a root node for f(t1, . . . , tn). Add an edge from the root node
to the (unique) symbol node for f .

(b) If the function is commutative (e.g. ∧, ∨, ≡, =, +, ∗), add an edge
from the root node to the root node of ti (i ∈ {1..n}). Quantifiers, as
commutative operators, are handled similarly (coloring discriminates
the matrix).

(c) If the function is not commutative:
i. For each argument ti, add an argument node and an edge from

this node to the root node of ti.
ii. Add an edge from the argument node of ti to the argument node

of ti+1 (1 ≤ i < n). These edges represent the ordering of the
arguments in f(t1, . . . , tn).

iii. Add an edge from the root node to the argument node of t1.

– Graph Coloring:
1. Argument nodes are assigned a specific, unique color.
2. Uninterpreted symbol nodes and root nodes are assigned a color based

on their sort (Boolean being considered as any other sort).
3. Each interpreted symbol node is assigned a unique color.

Example 2. Consider formula ϕ = p(f(a, b))∨ p(f(b, a))∨ p(g(a, b))∨ p(g(b, a)),
where p is a unary predicate and f, g, a and b are uninterpreted symbols. The
associated colored graph, G(ϕ), is shown in Figure 1 (colors are represented by
numeric labels and node shapes in the figure).

3 Symmetries in SMT-LIB

We test SyMT against 19 categories5 from SMT-LIB [5] to investigate the ex-
istence of symmetries and evaluate the efficiency of our tool. All tests are run
on an Intel Xeon X3440 with 16GB, using the four cores simultaneously and we
report the cumulative core time (roughly 4 times the CPU time). Three differ-
ent configurations of SyMT were tested. Configuration 1 has no simplification:

5 Bit vectors are not supported by our parser.

4

8,a 8,b

8

10,f 0

0

1

9,p0

8

0

0

1

0

8

10,g0

0

1

0

8

0

0

1

0

1

11,or

Generator 1: (a b)
Generator 2: (f g)

Fig. 1. Graph representation of ϕ.

the formula is parsed and converted to a graph for automorphism detection.
Configuration 2 uses trivial syntactic simplifications. Configuration 3 enables
stronger simplifications, using an SMT engine, e.g., simplification of atoms im-
plied by unit clauses. Configuration 2 may fail (with no symmetry reported)
because the simplification algorithm used is not linear with respect to the input
formula. However it often reveals symmetries hidden by irrelevant garbage eas-
ily removed by the simplification procedure. Configuration 3 is likely to fail on
very large formulas, but again, it may reveal hidden symmetries. Simplification
sometimes reduces a formula to false, in which case no symmetry is reported.

Among the 19 analyzed categories, three (LRA, QF UFLRA, QF UFNRA)
do not reveal symmetries with SyMT. Of the only five formulas in UFLRA, one
has symmetries. The others 14 categories presented numerous symmetries in at
least one of the tested configurations. Table 1 summarizes the results obtained
for these 14 categories. For each category we report the number of instances
(#Inst), the number of instances that have symmetries for the various simplifi-
cation configurations (#Sym[1], #Sym[2] and #Sym[3]), the number of instances
that have symmetries in at least one of the configurations (#Sym[P]), the average
logarithm in base 2 of the size of the symmetry group (Avg[GS]) for Configura-
tion 1, and the total time in seconds required to analyze all the instances (Time)
also for Configuration 1. It is clear from Table 1 that the SMT-LIB has many
highly symmetric formulas, in most categories. The cumulative time required to
build the graph and detect the symmetries is negligible in all categories. We do
not output the times for other configurations since there are timeouts and time
is dominantly spent in the simplification modules, so these numbers give little
insight about symmetry detection itself.

Results on QF UF require a comment. It seems that Saucy (the graph isomor-
phism tools used in SyMT) is not complete and does not exhibit all symmetries
that are guessed by the simple heuristic in [8]. For QF UF, we actually discov-

5

Category #Inst #Sym[1] #Sym[2] #Sym[3] #Sym[P] Avg[GS] Time

AUFLIA 6480 6212 6231 5796 6251 134.00 347.14

AUFLIRA 19917 15779 16475 12046 16476 1.08 6.65

AUFNIRA 989 985 985 902 985 1.00 0.33

QF AUFLIA 1140 534 603 91 613 1.19 0.58

QF AX 551 280 280 22 280 1.15 0.35

QF IDL 1749 346 658 747 840 12750.60 60.18

QF LIA 5938 715 1165 475 1185 110.95 97.04

QF LRA 634 99 176 212 247 40.46 2.52

QF NIA 530 167 169 168 169 5.98 2.64

QF NRA 166 9 43 43 43 1.00 0.19

QF RDL 255 41 41 62 62 180.20 7.61

QF UF 6647 250 544 543 544 83.47 26.87

QF UFIDL 431 32 200 198 225 1.19 1.95

QF UFLIA 564 0 198 198 198 0.00 0.36

UFNIA 1796 1062 1061 1048 1062 47.08 471.02

Table 1. Symmetries in SMT-LIB

ered more symmetries using Bliss [9] as a back-end, but for licensing reasons
SyMT cannot include this tool. We are investigating solutions.

4 Conclusions and Future Work

We presented SyMT, a tool to detect symmetries in SMT formulas. SyMT is
based on the reduction of the symmetry detection problem to graph automor-
phism detection. We presented the corresponding graph construction algorithm
and showed that symmetry detection scales on SMT formulas by providing ex-
perimental results on executions of the tool on many SMT-LIB categories. We
also showed that propositional symmetry breaking can be lifted to the SMT
case, which provides a simple symmetry breaking mechanism for SMT.

In future work we will address the issue of symmetry breaking. We want
to study the structures of symmetry groups found by SyMT. A deeper under-
standing of these structures may provide useful information to develop generic
symmetry breaking mechanisms. We also believe that, to fully exploit the pres-
ence of symmetries in formulas, ad hoc, application-tailored, heuristics are also
necessary. We will use SyMT to mine the SMT-LIB to find symmetries, and we
will devise appropriate heuristics integrated into an SMT symmetry breaking
pre-processor. We expect this will result in a significant speed up for solving the
formulas in the repository, since our experiments show symmetries are pervasive
in many SMT test sets. We plan to carry out a similar analysis on the TPTP
library [13].

We are aware that symmetry breaking is essentially heuristic, and a com-
pilation of ad hoc heuristics would not be a silver bullet: the expertise of the
user is generally the best approach to break symmetries. The current version

6

of SyMT already provides the SMT users with a simple, yet powerful, tool to
detect symmetries.

The tool and its source are available for download under the BSD License
at http://www.veriT-solver.org/SyMT. It uses the Saucy 3.0 source code,
distributed under its own specific license.

Acknowledgments: we would like to thank Stephan Merz for interesting discus-
sions, and Cesare Tinelli for encouraging to investigate further symmetries in
SMT. We are very grateful to the Saucy developers for their tool.

References

1. F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Solving difficult instances
of Boolean satisfiability in the presence of symmetry. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 22(9):1117–1137, 2003.

2. C. Areces, G. Hoffmann, and E. Orbe. Symmetries in modal logics: A coinductive
approach. In Proc. of the 7th Workshop on Logical and Semantic Frameworks, with
Applications (LSFA 2012), Rio de Janeiro, September 2012.

3. G. Audemard, B. Mazure, and L. Sais. Dealing with symmetries in quantified
Boolean formulas. In Proc. of SAT’04, pages 257–262, 2004.

4. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theo-
ries. In A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 26, pages 825–885. IOS Press, Feb. 2009.

5. C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2010.

6. J. Crawford. A theoretical analysis of reasoning by symmetry in first-order logic.
In Proc. of AAAI Workshop on Tractable Reasoning, pages 17–22, 1992.

7. J. Crawford, M. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates
for search problems. In L. Carlucci Aiello, J. Doyle, and S. Shapiro, editors, KR,
pages 148–159. Morgan Kaufmann, 1996.

8. D. Déharbe, P. Fontaine, S. Merz, and B. Woltzenlogel Paleo. Exploiting symmetry
in SMT problems. In N. Bjørner and V. Sofronie-Stokkermans, editors, CADE,
volume 6803 of LNCS, pages 222–236. Springer, 2011.

9. T. Junttila and P. Kaski. Engineering an efficient canonical labeling tool for large
and sparse graphs. In D. Applegate, G. Brodat, D. Panario, and R. Sedgewick,
editors, Proc. of the 9th Workshop on Algorithm Engineering and Experiments and
the 4th Workshop on Analytic Algorithms and Combinatorics. SIAM, 2007.

10. H. Katebi, K. Sakallah, and I. Markov. Conflict anticipation in the search for graph
automorphisms. In N. Bjørner and A. Voronkov, editors, LPAR, volume 7180 of
LNCS, pages 243–257. Springer, 2012.

11. B. McKay. Nauty user’s guide. Technical report, Australian National University,
Computer Science Department, 1990.

12. K. Sakallah. Symmetry and satisfiability. In A. Biere, M. Heule, H. van Maaren,
and T. Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Arti-
ficial Intelligence and Applications, pages 289–338. IOS Press, 2009.

13. G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

7

http://www.veriT-solver.org/SyMT

	SyMT: finding symmetries in SMT formulas

