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Abstract. We present a fast and reliable reconstruction of proofs gener-
ated by the SMT solver veriT in Isabelle. The fine-grained proof format
makes the reconstruction simple and efficient. For typical proof steps,
such as arithmetic reasoning and skolemization, our reconstruction can
avoid expensive search. By skipping proof steps that are irrelevant for
Isabelle, the performance of proof checking is improved. Our method in-
creases the success rate of Sledgehammer by halving the failure rate and
reduces the checking time by 13%. We provide a detailed evaluation of
the reconstruction time for each rule. It reveals that the runtime is influ-
enced by both simple rules that appear very often and common complex
rules.

Keywords: automatic theorem provers · proof assistants ·
proof verification

1 Introduction

Proof assistants are used in verification, formal mathematics, and other areas
to provide trustworthy, machine-checkable formal proofs of theorems. Proof au-
tomation reduces the burden of proof on proof assistant users and allows them
to focus on the core of their arguments instead of technical details. A successful
approach implemented by “hammers”, like Sledgehammer for Isabelle [14], is
to heuristically selects facts from the background; use an external automatic
theorem prover, such as a satisfiability modulo theories (SMT) solver [11], to
filter facts needed to discharge the goal; and to use the filtered facts to find a
trusted proof.

Isabelle does not accept proofs that do not go through the assistant’s inference
kernel. Hence, Sledgehammer attempts to find the fastest internal method that
can recreate the proof (preplay). This is often a call of the smt tactic, which runs
an SMT solver, parses the proof, and reconstructs it through the kernel. This

http://orcid.org/0000-0002-0829-5056
http://orcid.org/0000-0002-1705-3083
http://orcid.org/0000-0002-1830-7532


2 Schurr, Fleury, and Desharnais

reconstruction allows the usage of external provers. The smt tactic was originally
developed for the SMT solver Z3 [17,34].

The SMT solver CVC4 [9] is one of the best solvers on Sledgehammer gen-
erated problems [13], but currently does not produce proofs for problems with
quantifiers. To reconstruct its proofs, Sledgehammer mostly uses the smt tactic
based on Z3. However, since CVC4 uses more elaborate quantifier instantiation
techniques, many problems provable for CVC4 are unprovable for Z3. Therefore,
Sledgehammer regularly fails to find a trusted proof and the user has to write the
proofs manually. veriT [18] (Sect. 2) supports these techniques and we extend
the smt tactic to reconstruct its proofs. With the new reconstruction (Sect. 3),
more smt calls are successful. Hence, less manual labor is required of users.

We devised a very early prototype [6, Sect. 6.2, second paragraph] of the
extension to validate the fine-grained proof format. We also published more
details on the reconstruction method and the rules [24] without adapting veriT
to ease reconstruction (Sect. 3).

The runtime of the smt method depends on the runtime of the reconstruction
and the solver. To simplify the reconstruction, we do not treat veriT as a black
box anymore, but extend it to produce more detailed proofs that are easier
to reconstruct. We use detailed rules for simplifications with a combination of
propositional, arithmetic, and quantifier reasoning. Similarly, we add additional
information to avoid search, like for linear arithmetic and for term normalization.
Our reconstruction method uses the newly provided information, but it also has
a step skipping mode that combines some steps (Sect. 4).

We optimize the performance further by tuning the search by veriT. Multi-
ple options influence the execution time of an SMT solver. To fine-tune veriT’s
search procedure, we select four different combinations of options, or strategies,
by generating typical problems and selecting options with complementary per-
formance on these problems. We extend Sledgehammer to compare these four
selected strategies and suggest the fastest to the user. We then evaluate the
reconstruction with Sledgehammer on a large benchmark set. Our new tactic
halves the failure rate. We also study the time required to reconstruct each rule.
Many simple rules occur often, showing the importance of step skipping (Sect. 5).

Finally, we discuss related work (Sect. 6). Compared to the prototype [24],
the smt tactic is now thoroughly tested. We fixed all issues revealed during
development and improved the performance of the reconstruction method. We
integrated the work presented here into Isabelle version 2021; i.e., Sledgehammer
can also suggest veriT, without user interaction. To simplify future reconstruction
efforts, we document the proof format and all rules used by veriT. The resulting
reference manual is part of the veriT documentation [40].

2 veriT and Proofs

The SMT solver veriT is an open source solver based on the CDCL(T ) calculus.
In proof-production mode, it supports the theories of uninterpreted functions
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with equality, linear real and integer arithmetic, and quantifiers. To support
quantifiers veriT uses quantifier instantiation and extensive preprocessing.

veriT’s proof syntax is an extension SMT-LIB [10] which uses S-expressions
and prefix notation. The proofs are refutation proofs, i.e., proofs of K. A proof
is an indexed list of steps. Each step has a conclusion clause (cl ..) and is
annotated with a rule, a list of premises, and some rule-dependent arguments.
veriT distinguishes 90 rules [40]. Subproofs are the key feature of the proof format.
They introduce an additional context. Contexts are used to reason about binders,
e.g., preprocessing steps like transformation under quantifiers.

The conclusion of rules with contexts are always equalities. The context
models a substitution into the free variables of the term on the left-hand side
of the equality. Consider the following proof fragment that renames the variable
name x, as done during preprocessing:

(assume a0 (exists (x A) (P x))

(anchor :step t3 :args (:= x vr))

(step t1 (cl (= x vr)) :rule cong)

(step t2 (cl (= (f x) (f vr))) :rule cong)

(step t3 (cl (= (exists (x A) (f vr))

(exists (vr A) (f vr))) :rule bind)

The assume command repeats input assertions or states local assumptions. Sub-
proofs start with the anchor command that introduces a context. Semantically,
the context is a shorthand for a lambda abstraction of the free variable and an
application of the substituted term. Here the context is x ÞÑ vr and the step
t1 means pλx. xq vr “ vr. The step is proven by congruence (rule cong). Then
congruence is applied again (step t2) to prove that pλx. f xq vr “ f vr and step
t3 concludes the renaming.

During proof search each module of veriT appends steps onto a list. Once
the proof is completed, veriT performs some cleanup before printing the proof.
First, a pruning phase removes branches of the proof not connected to the root K.
Second, a merge phase removes the duplicated steps. The final pass prepares the
data structures for the optional term sharing via name annotations.

3 Overview of the veriT-Powered smt Tactic

Isabelle is a generic proof assistant based on an intuitionistic logic framework,
Pure, and is almost always only used parameterized with a logic. In this work we
use only Isabelle/HOL, the parameterization of Isabelle with higher-order logic
with rank-1 (top level) polymorphism. Isabelle adheres to the LCF [25] tradition.
Its kernel supports only a small number of inferences. Tactics are programs that
prove a goal by using only the kernel for inferences. The LCF tradition also
means that external tools, like SMT solvers, are not trusted.

Nevertheless, external tools are successfully used. They provide relevant facts
or a detailed proof. The Sledgehammer tool implements the former and passes
the filtered facts to trusted tactics during preplay. The smt tactic implements



4 Schurr, Fleury, and Desharnais

the latter approach. The proof provided by the solver is checked by Isabelle. The
focus of our work is the smt tactic, but we also extended Sledgehammer so that
it also suggests the new tactic to users.

The smt tactic translates the current goal to the SMT-LIB format [10], runs
an SMT solver, parses the proof, and replays it through Isabelle’s kernel. To
choose the smt tactic the user applies (smt (z3)) to use Z3 and (smt (verit))

to use veriT. We will refer to them as z-smt and v-smt. The proof formats of Z3
and veriT are so different that separate reconstruction modules are needed. The
v-smt tactic performs four steps:

1. It negates the proof goal to have a refutation proof and also encodes the goal
into first-order logic. The encoding eliminates lambda functions. To do so, it
replaces each lambda function with a new function and creates app operators
corresponding to function application. Then veriT is called to find a proof.

2. It parses the proof found by veriT (if one is found) and encodes it as a
directed acyclic graph with K as the only conclusion.

3. It converts the SMT-LIB terms to typed Isabelle terms and also reverses the
encoding used to convert higher-order into first-order terms.

4. It traverses the proof graph, checks that all input assertions match their
Isabelle counterpart and then reconstructs the proof step by step using the
kernel’s primitives.

4 Tuning the Reconstruction

To improve the speed of the reconstruction method, we create small and well-
defined rules for preprocessing simplifications (Sect. 4.1). Previously, veriT implic-
itly normalized every step; e.g., repeated literals were immediately deleted. It now
produces proofs for this transformation (Sect. 4.2). Finally, the linear-arithmetic
steps contain coefficients which allow Isabelle to reconstruct the step without
relying on its limited arithmetic automation (Sect. 4.3). On the Isabelle side, the
reconstruction module selectively decodes the first-order encoding (Sect. 4.4). To
improve the performance of the reconstruction further, it also skips some proof
steps (Sect. 4.5).

4.1 Preprocessing Rules

During preprocessing SMT solvers perform simplifications on the operator level
which are often akin to simple calculations. For example, the term aˆ 0ˆ fpxq
is replaced by the constant 0.

To capture such simplifications, we create a list of 17 new rules: one rule per
arithmetic operator, one to replace boolean operators such as XOR with their
definition, and one to replace n-ary operator applications with binary applications.
This is a compromise: having one rule for every possible simplification would
create a much longer proof and make veriT more complicated. The example
above now produces a prod simplify step with the conclusion aˆ 0ˆ fpxq “ 0.
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Previously, a single step of the connect equiv rule collected all those sim-
plifications and no list of simplifications performed by this rule existed. The
reconstruction relied an experimentally created list of tactics to be fast enough.

On the Isabelle side, the reconstruction is fast, because we can direct the
search instead of trying automated tactics that can also work on other parts of
the formula. For example, the simplifier handles the numeral manipulations of
the prod simplify rule and we restrict it to only use arithmetic lemmas.

Moreover, since we know the performed transformations, we can ignore some
parts of the terms by generalizing, i.e., replacing them by constants [17]. Because
generalized terms are smaller, the search is more directed and we are less likely
to hit the search-depth limitation of Isabelle’s auto tactic as before. Overall, the
reconstruction is more robust and easier to debug.

4.2 Implicit Steps

To simplify reconstruction, we avoid any implicit normal form of conclusions. For
example, a rule concluding b_P can be used to prove P _P . In such cases veriT
automatically normalizes the conclusion P _ P to P . Without a proof of the
normalization, the reconstruction has to implement special cases for most rules.

We add new proof rules for the normalization and extend veriT to use them.
Instead of keeping only the normalized step, both the original and the normal-
ized step appear in the proof. For the example above, we have the step P _ P
and the normalized P . To remove a double negation   t we introduce the tau-
tology    t _ t and resolve it with the original clause. Our changes do not
affect any other part of veriT. The solver now also prunes the superfluous steps
concluding J.

On the Isabelle side, the reconstruction becomes more regular with fewer
special cases. The reconstruction method can directly reconstruct rules. To deal
with the normalization, the reconstruction used to first generate the conclusion
of the theorem and then ran the simplifier to match the normalized conclusion.
This could not deal with tautologies. The extra step improves the reliability and
the speed of the reconstruction.

We also improve the proof reconstruction of quantifier instantiation steps. One
of the instantiation schemes, conflicting instances [7,36], only works on implicitly
clausified terms. We introduce an explicit quantified-clausification rule qnt cnf

that is issued before instantiating. While this rule is not detailed, knowing when
clausification is needed improves reconstruction, because it avoids clausifying
unconditionally. The clausification is also shared between instantiations of the
same term.

4.3 Arithmetic Reasoning

We use a proof witness to handle linear arithmetic. When the propositional
model is unsatisfiable in the theory of linear real arithmetic, the solver creates
la generic steps. The conclusion is a tautological clause of linear inequalities
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and equations and the justification of the step is a list of coefficients so that
the linear combination is a trivially contradictory inequality after simplification
(e.g., 0 ě 1). Farkas’ lemma guarantees the existence of such coefficients for reals.
Most SMT solvers, including veriT, use the simplex method [20] to handle linear
arithmetic. It calculates the coefficients during normal operation.

The real arithmetic solver also strengthens inequalities on integer variables
before adding them to the simplex method. For example, if x is an integer the
inequality 2x ă 3 becomes x ď 1. The corresponding justification is the rational
coefficient 1

2 . The reconstruction must replay this strengthening.
The complete linear arithmetic proof step 1 ă x_ 2x ă 3 looks like

(step t11 (cl (< 1 x) (< (* 2 x) 3))

:rule la_generic :args (1 (div 1 2)))

The reconstruction of an la generic step in Isabelle starts with the goal
Ž

i ci where each ci is either an equality or an inequality. The reconstruction
method first generalizes over the non-arithmetic parts. Then it transforms the
lemma into the equivalent formulation c1 ùñ ¨ ¨ ¨ ùñ cn ùñ K and removes
all negations (e.g., by replacing  a ď b with b ą a).

Next, the reconstruction method multiplies the equation by the corresponding
coefficient. For example, for integers, the equation A ă B, and the rational
coefficient p

q (with p ą 0 and q ą 0), it strengthens the equation and multiplies
by p to get

pˆ pAdiv qq ` pˆ pif Bmod q “ 0 then 1 else 0q ď pˆ pB div qq.

The if-then-else term pif Bmod q “ 0 then 1 else 0q corresponds to the strength-
ening. If Bmod q “ 0, the result is an equation of the form A1 ` 1 ď B1, i.e.,
A1 ă B1. No strengthening is required for the corresponding theorem over reals.

Finally, we can combine all the equations by summing them while being
careful with the equalities that can appear. We simplify the resulting (in)equality
using Isabelle’s simplifier to derive K.

To replay linear arithmetic steps, Isabelle can also use the tactic linarith as
used for Z3 proofs. It searches the coefficients necessary to verify the lemma.
The reconstruction used it previously [24], but the tactic can only find integer
coefficients and fails if strengthening is required. Now the rule is a mechanically
checkable certificate.

4.4 Selective Decoding of the First-order Encoding

Next, we consider an example of a rule that shows the interplay of the higher-order
encoding and the reconstruction. To express function application, the encoding
introduces the first-order function app and constants for encoded functions. The
proof rule eq congruent expresses congruence on a first-order function: pt1 ‰
u1q _ . . . _ ptn ‰ unq _ fpt1, . . . , tnq “ fpu1, . . . , unq. With the encoding it can
conclude f ‰ f 1 _ x ‰ x1 _ apppf, xq “ apppf 1, x1q. If the reconstruction unfolds
the entire encoding, it builds the term f‰f 1_x‰x1_fx“f 1x1. It then identifies
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the functions and the function arguments and uses rewriting to prove that if
f “ f 1 and x “ x1, then fx “ f 1x1.

However, Isabelle β-reduces all terms implicitly, changing the term structure.
Assume f :“ λx. x “ a and f 1 :“ λx. a “ x. After unfolding all constructs that
encode higher-order terms and after β-reduction, we get pλx. x “ aq ‰ pλx. a “
x1q _ px ‰ x1q _ px “ aq “ pa “ y1q. The reconstruction method cannot identify
the functions and function arguments anymore.

Instead, the reconstruction method does not unfold the encoding including
app. This eliminates the need for a special case to detect lambda functions. Such
a case was used in the previous prototype, but the code was very involved and
hard to test (such steps are rarely used).

4.5 Skipping Steps

The increased number of steps in the fine-grained proof format slows down re-
construction. For example, one rule only returns its premise, but accounts for
more than 1% of the reconstruction time. A more involved example is skolem-
ization from Dx. P x. The proof from Z3 uses only one step. veriT uses eight
steps—first renaming it to pDx. P xq “ pDv. P vq (with a subproof of at least
2 steps), then concluding the renaming to get pDv. P vq (two steps), then
pDv. P vq “ P pεv. P vq (with a subproof of at least 2 steps), after that,
ppDv. P vq ‰ P pεv. P vqq _  pDv. P vq _ P pεv. P vq, and finally P pεv. P vq by
resolution.

To reduce the number of steps, our reconstruction skips two kinds of steps.
First, it replaces every usage of the or rule by its only premise. Second, it skips
the renaming of bound variables. The proof format treats @x. P x and @y. P y
as two different terms and requires a detailed proof of the conversion. Isabelle,
however, uses De Bruijn indices and variable names are irrelevant. Hence, we
replace steps of the form p@x. P xq ðñ p@y. P yq by a single application
of reflexivity. Since veriT initially canonizes all variable names, this eliminates
many steps.

We can also simplify the idiom “equiv pos2; th resolution”. veriT gener-
ates it for each skolemization and variable renaming. Step skipping replaces it
by a single step which we replay using a specialized theorem.

On proof with quantifiers, step skipping can remove more than half of the
steps—only four steps remain in the skolemization example above (where two
are simply reflexivity). However, with step skipping the smt method is not an
independent checker that confirms the validity of every single step in a proof.

5 Evaluation

During development we routinely tested our proof reconstruction to find bugs. As
a side effect, we produced SMT-LIB files corresponding to the calls. We measure
the performance of veriT with various options on them and select five different
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Table 1. Options corresponding to the different veriT strategies

Name Options

default (no option)
del insts --index-sorts --index-fresh-sorts --ccfv-breadth --inst-deletion

--index-SAT-triggers --inst-deletion-loops --inst-deletion-track-var
ccfv SIG --triggers-new --index-SIG --triggers-sel-rm-specific
ccfv insts --triggers-new --index-sorts --index-fresh-sorts --triggers-sel-rm-specific

--triggers-restrict-combine --inst-deletion-loops --index-SAT-triggers
--inst-deletion-track-vars --ccfv-index=100000 --ccfv-index-full=1000
--inst-sorts-threshold=100000 --ematch-exp=10000000 --inst-deletion

best --triggers-new --index-sorts --index-fresh-sorts --triggers-sel-rm-specific

strategies (Sect. 5.1). We also evaluate the repartition of the tactics used by
Sledgehammer for preplay (Sect. 5.2), and the impact of the rules (Sect. 5.3).

We performed the strategy selection on a computer with two Intel Xeon
Gold 6130 CPUs (32 cores, 64 threads) and 192 GiB of RAM. We performed
Isabelle experiments with Isabelle version 2021-RC2 on a computer with two
AMD EPYC 7702 CPUs (128 cores, 256 threads) and 2 TiB of RAM.

5.1 Strategies

veriT exposes a wide range of options to fine-tune the proof search. In order
to find good combinations of options (strategies), we generate problems with
Sledgehammer and use them to fine-tune veriT’s search behavior. Generating
problems also makes it possible to test and debug our reconstruction.

We test the reconstruction by using Isabelle’s Mirabelle tool. It reads theories
and automatically runs Sledgehammer [13] on all proof steps. Sledgehammer
calls various automatic provers (here the SMT solvers CVC4, veriT, and Z3 and
the superposition prover E [38]) to filter facts and chooses the fastest tactic that
can prove the goal. The tactic smt is used as a last resort.

To generate problems for tuning veriT, we use the theories from HOL-Library
(an extended standard library containing various developments) and from the
formalizations of Green’s theorem [1, 2], the Prime Number Theorem [22], and
the KBO ordering [12]. We call Mirabelle with only veriT as a fact filter. This
produces SMT files for representative problems Isabelle users want to solve and
a series of calls to v-smt. For failing v-smt calls three cases are possible: veriT
does not find a proof, reconstruction times out, or reconstruction fails with an
error. We solved all reconstruction failures in the test theories.

To find good strategies, we determine which problems are solved by several
combination of options within a two second timeout. We then choose the strategy
which solves the most benchmarks and three strategies which together solve the
most benchmarks. For comparison, we also keep the default strategy.

The strategies are shown in Table 1 and mostly differ in the instantiation
schemes. The strategy del insts uses instance deletion [5] and uses a breadth-
first algorithm to find conflicting instances. All other strategies rely on extended
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trigger inference [29]. The strategy ccfv SIG uses a different indexing method for
instantiation. It also restricts enumerative instantiation [35], because the options
--index-sorts and --index-fresh-sorts are not used. The strategy ccfv insts increases
some thresholds. Finally, the strategy best uses a subset of the options used
by the other strategies. It is also the strategy used by Sledgehammer for fact
filtering.

We have also considered using a scheduler in Isabelle as used in the SMT
competition. The advantage is that we do not need to select the strategy on
the Isabelle side. However, it would make v-smt unreliable. A problem solved by
only one strategy just before the end of its time slice can become unprovable on
slower hardware. Issues with z-smt timeouts have been reported on the Isabelle
mailing list, e.g., due to an antivirus delaying the startup [27].

5.2 Improvements of Sledgehammer Results

To measure the performance of the v-smt tactic, we ran Mirabelle on the full HOL-
Library, the theory Prime Distribution Elementary (PDE) [21], an executable
resolution prover (RP) [37], and the Simplex algorithm [30]. We extended Sledge-
hammer’s proof preplay to try all veriT strategies and added instrumentation for
the time of all tried tactics. Sledgehammer and automatic provers are mostly non-
deterministic programs. To reduce the variance between the different Mirabelle
runs, we use the deterministic MePo fact filter [33] instead of the better perform-
ing MaSh [28] that uses machine learning (and depends on previous runs) and
underuse the hardware to minimize contention. We use the default timeouts of
30 seconds for the fact filtering and one second for the proof preplay. This is
similar to the Judgment Day experiments [16]. The raw results are available [26].

Success Rate. Users are not interested in which tactics are used to prove a
goal, but in how often Sledgehammer succeeds. When running it, there are three
possible outcomes: (i) a successfully preplayed proof, (ii) a proof hint that failed
to be preplayed, or (iii) a failure. We define the success rate as the proportion of
outcome (i) over the total number of Sledgehammer calls.

Table 2 gathers the results of running Sledgehammer on all unique goals of
selected formalizations and analyzing its outcome using different preplay config-
urations where only z-smt (the baseline) or both v-smt and z-smt are enabled.
Any useful preplay tactic should increase the success rate (SR) by preplaying
new proof hints provided by the fact-filter prover, reducing the preplay failure
rate (PF).

Let us consider, e.g., the results when using CVC4 as fact-filter prover. The
success rate of the baseline on the HOL-Library is 54.6% and its preplay failure
rate is 1.5%. This means that CVC4 found a proof for 54.6%`1.5% “ 56.1% of the
goals, but that Isabelle’s proof methods failed to preplay many of them. In such
cases, Sledgehammer gives a proof hint to the user, which has to manually find a
functioning proof. By enabling v-smt, the failure rate decreases by two thirds, from
1.5% to 0.5%, which directly increases the success rate by 1 percentage point: new
cases where the burden of the proof is moved from the user to the proof assistant.
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Table 2. Outcome of Sledgehammer calls showing the total success rate (SR) of one-
liner proof preplay, the number of suggested v-smt (OLv) and z-smt (OLz) one-liners,
and the number of preplay failures (PF), in percentages of the unique goals.

HOL-Library PNT RP Simplex
(13 562 goals) (1 715 goals) (1 658 goals) (1 982 goals)

SR OLv OLz PF SR OLv OLz PF SR OLv OLz PF SR OLv OLz PF

Fact-filter prover: CVC4

z-smt 54.6 2.7 1.5 32.9 3.6 0.8 65.0 1.3 0.8 51.6 1.6 0.9
both 55.6 2.6 1.1 0.5 33.3 3.5 0.6 0.3 65.6 1.3 0.5 0.3 52.1 1.0 1.1 0.4

Fact-filter prover: E

z-smt 55.5 1.1 1.7 36.2 0.4 1.5 61.7 0.7 1.1 49.7 1.4 0.7
both 56.0 0.9 0.6 1.3 36.4 0.5 0.1 1.3 62.0 0.8 0.2 0.8 49.8 0.4 1.1 0.6

Fact-filter prover: veriT

z-smt 48.6 1.7 1.2 26.1 1.5 0.6 58.1 0.9 0.7 46.6 1.0 1.0
both 49.4 1.6 0.9 0.3 26.5 1.3 0.5 0.2 58.6 1.0 0.4 0.2 47.3 1.0 0.7 0.3

Fact-filter prover: Z3

z-smt 50.8 2.5 0.8 27.9 2.7 0.4 60.5 0.8 0.6 48.3 0.9 0.3
both 51.3 1.8 1.1 0.3 28.2 2.4 0.6 0.1 60.9 1.1 0.1 0.2 48.4 0.4 0.6 0.2

The failure rate is reduced in similar proportions for PNT (63%), RP (63%), and
Simplex (56%). For these formalizations, this improvement translates to a smaller
increase of the success rate, because the baseline failure rate was smaller to begin
with. This confirms that the instantiation technique conflicting instances [7, 36]
is important for CVC4.

When using veriT or Z3 as fact-filter prover, a failure rate of zero could
be expected, since the same SMT solvers are used for both fact filtering and
preplaying. The observed failure rate can partly be explained by the much smaller
timeout for preplay (1 second) than for fact filtering (30 seconds).

Overall, these results show that our proof reconstruction enables Sledgeham-
mer to successfully preplay more proofs. For the user, this means that the avail-
ability of v-smt as a proof preplay tactic increases the number of goals that can
be fully automatically proved, by reducing the failure rate.

Saved time. Table 3 shows a different view on the same results. Instead of the
raw success rate, it shows the time that is spent reconstructing proofs. Using
the baseline configuration, preplaying all formalizations takes a total of 258.1`
31.5 ` 36.0 ` 39.0 “ 364.6 seconds. When enabling v-smt, some calls to z-smt
are replaced by faster v-smt calls and the reconstruction time decreases by 13%
to 218.2 ` 26.5 ` 33.4 ` 37.9 “ 316 seconds. Note that the per-formalization
improvement varies considerably: 15% for HOL-Library, 16% for PNT, 5.6% for
RP, and 2.9% for Simplex.
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Table 3. Preplayed proofs (Pr.) and their execution time (s) when using CVC4 as
fact-filter prover. Shared proofs are found with and without v-smt and new proofs
are found only with v-smt. The proofs and their associated timings are categorized in
one-liners using v-smt (OLv), z-smt (OLz), or any other Isabelle proof methods (OLo).

Total Shared proofs New proofs
Total = OLv + OLz + OLo OLv

Pr. Time “ Time (Pr.) ` Time (Pr.) ` Time ( Pr. ) Time ( Pr. )

HOL-
Library

z-smt 7 421 258.1 “ 87.5 (362) ` 170.6 (7 059)
both 7 559 218.2 “ 28.8 (216) ` 18.8 (147) ` 170.6 (7 059) 35.0 ( 137)

PNT
z-smt 565 31.5 “ 14.3 ( 62) ` 17.1 ( 503)
both 573 26.5 “ 7.2 ( 52) ` 2.2 ( 10) ` 17.1 ( 503) 3.6 ( 8)

RP
z-smt 1 080 36.0 “ 8.3 ( 21) ` 27.7 (1 059)
both 1 089 33.4 “ 3.5 ( 13) ` 2.2 ( 8) ` 27.7 (1 059) 2.3 ( 9)

Simplex
z-smt 1 024 39.0 “ 6.9 ( 32) ` 32.1 ( 992)
both 1 033 37.9 “ 2.2 ( 11) ` 3.6 ( 21) ` 32.1 ( 992) 3.2 ( 9)

Table 4. Reconstruction time and number of solved goals when removing a single
strategy (HOL-Library results only), using CVC4 as fact filter.

Shared proofs New proofs
OLv OLz OLv

Time Proofs Time Proofs Time Proofs

No best 17.9 125 47.3 238 24.6 91
No ccfv SIG 27.5 201 22.0 162 33.7 127
No ccfv threshold 28.9 215 19.0 148 34.6 133
No del insts 27.9 203 22.1 160 32.0 125
No default 29.2 216 18.8 147 34.5 136

Baseline 28.8 216 18.8 147 35.0 137

For the user, this means that enabling v-smt as a proof preplay tactic may
significantly reduce the verification time of their formalizations.

Impact of the Strategies. We have also studied what happens if we remove a
single veriT strategy from Sledgehammer (Table 4). The most important one
is best, as it solves the highest number of problems. On the contrary, default is
nearly entirely covered by the other strategies. ccfv SIG and del insts have a
similar number where they are faster than Z3, but the former has more unique
goals and therefore, saves more time. Each strategy has some uniquely solved
problems that cannot be reconstructed using any other. The results are similar
for the other theories used in Table 3.

5.3 Speed of Reconstruction

To better understand what the key rules of our reconstruction are, we recorded
the time used to reconstruct each rule and the time required by the solver. The
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reconstruction ratio shows how much slower reconstructing compared to finding
a proof. For very fast proofs, Z3’s concise format is better (first quartile: 2.2 for
v-smt vs 1.5). The medians are similar (6.2 vs 7.1), but the third quartile (12.4
vs 22.9) shows that the detailed proof format reduces the number of slow proofs.

Fig. 1 shows the distribution of the time spent on some rules.5 We remove
the slowest and fastest 5% of the applications, because garbage collection can
trigger at any moment and even trivial rules can be slow. Fig. 2 gives the sum
of all reconstruction times over all proofs. We call parsing the time required to
parse and convert the veriT proof into Isabelle terms.

Overall, there are two kinds of rules: (1) direct application of a sequence of
theorems—e.g., equiv pos2 corresponds to the theorem  pa Ø bq _  a _ b—
and (2) calls to full-blown tactics—like qnt cnf.

First, direct application of theorems are usually fast, but they occur so often
that the cumulative time is substantial. For example, cong only needs to unfold
assumptions and apply reflexivity and symmetry of equality. However, it appears
so often and sometimes on large terms, that it is an important rule.

Second, rules which require full-blown tactics are the slowest rules. For qnt
cnf (CNF under quantifiers, see Sect. 4.2), we have not written a specialized
tactic, but rely on Isabelle’s tableau-based blast tactic. This rule is rather slow,
but is rarely used. It is similar to the rule la generic: it is slow on average, but
searching the coefficients takes even more time.

We can also see that the time required to check the simplification steps that
were formerly combined into the connect equiv rule is not significant anymore.

We have performed the same experiments with the reconstruction of the SMT
solver Z3. Unlike for veriT, we do not have the amount of time required for parsing.
The results are shown in Figs. 3 and 4. The rule distribution is very different.
The nnf-neg and nnf-pos rules are the slowest rules and take a huge amount of
time in the worst case. However, the coarser quantifier instantiation step is on
average faster than the one produced by veriT. We suspect that reconstruction
is faster because the rule, which is only an implication without choice terms, is
easier to check (no equality reordering).

6 Related Work

The SMT solvers CVC4 [9], Z3 [34], and veriT [18] produce proofs. CVC4 does not
record quantifier reasoning in the proof, whereas Z3 uses some macro rules. Proofs
from SMT solvers have also been used to generate unsatisfiability cores [19], and
interpolants [32]. They are also useful to debug the solver itself, since unsound
steps often point to the origin of bugs. Our work also relates to systems like
Dedukti [4] that focuses on translating proof steps, not on replaying them.

Proof reconstruction has been implemented in various systems, including
CVC4 proofs in HOL Light [31], Z3 in HOL4 and Isabelle/HOL [17], and veriT [3]
and CVC4 [23] in Coq. Only veriT produces detailed proofs for preprocessing and

5 Note to reviewers: Figs. 5 and 6 of the appendix show the graph with all rules.
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skolemization. SMTCoq [3,23] currently supports veriT’s version 1 of the proof
output which has different rules, does not support detailed skolemization rules,
and is implemented in the 2016 version of veriT, which has worse performance.
SMTCoq also supports bit vectors and arrays.

The reconstruction of Z3 proofs in HOL4 and Isabelle/HOL is one of the
most advanced and well tested. It is regularly used by Isabelle users. The Z3
proof reconstruction succeeds in more than 90% of Sledgehammer benchmarks [13,
Section 9] and is efficient (an older version of Z3 was used). Performance numbers
are reported [15,17] not only for problems generated by proof assistants (including
Isabelle), but also for preexisting SMT-LIB files from the SMT-LIB library.

The performance study by Böhme [15, Sect. 3.4] uses version 2.15 of Z3,
whereas we use version 4.4.0 which currently ships with Isabelle. Since version
2.15, the proof format changed slightly (e.g., th-lemma-arith was introduced),
fulfilling some of the wishes expressed by Böhme and Weber [17] to simplify
reconstruction. Surprisingly, the nnf rules do not appear among the five rules that
used the most runtime. Instead, the th-lemma and rewrite were the slowest rule.
Similarly to veriT, the cong rule was among the most used (without accounting
for the most time), but it does not appear in our tests.

CVC4 follows a different philosophy from veriT and Z3: it produces proofs in
a logical framework with side conditions [39]. The output can contain programs
to check certain rules. The proof format is flexible in some aspects and restrictive
in others. Currently CVC4 does not generate proofs for quantifiers.

7 Conclusion

We presented an efficient reconstruction of proofs generated by a modern SMT
solver in an interactive theorem prover. Our improvements address reconstruction
challenges for proof steps of typical inferences performed by SMT solvers.

By studying the time required to replay each rule, we were able to compare the
reconstruction for two different proof formats with different design directions. The
very detailed proof format of veriT makes the reconstruction easier to implement
and allows for more specialization of the tactics. The ratio of time to reconstruct
and time to find a proof is better for our more detailed format. Integrating our
reconstruction in Isabelle halves the number of failures from Sledgehammer and
nicely completes the existing reconstruction method with Z3.

Our work is integrated into Isabelle version 2021. Sledgehammer suggests the
veriT-based reconstruction if it is the fastest tactic that finds the proof; so users
profit without action required on their side. We plan to improve the reconstruction
of the slowest rules and remove inconsistencies in the proof format. The developers
of the SMT solver CVC4 are currently rewriting the proof generation and plan
to support a similar proof format. We hope to be able to reuse the current
reconstruction code by only adding support for CVC4-specific rules. Generating
and reconstructing proofs from the veriT version with higher-order logic [8]
could also improve the usefulness of veriT on Isabelle problems. The current
proof rules [40] should accommodate the more expressive logic.
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17. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer Berlin
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5 14
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8 Appendix

Figure 5 is the complete version of Figure 1. Figure 6 is the complete version of
Figure 2.
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Fig. 6. Percentage of the total time spent per rule for the SMT solver veriT.
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