
A Reference of the veriT Proof Format

The veriT Team and Contributors

November 17, 2021

Contents

1 Introduction 2
1.1 Overview . 2

2 Notation 2

3 Core Concepts of the Proof Format 3

4 The Concrete Syntax 5
4.1 Subproofs . 7
4.2 Sharing and Skolem Terms . 8

5 List of Proof Rules 8

cb Version 2021.06.2-rmx

1 Introduction

This document is a reference manual for the format used by the SMT solver veriT to
print proofs of the unsatisfiability of the input problem. It is part of the veriT repository
and represents the format as generated by the corresponding source code. Currently the
introduction gives a general overview of the proof format and lacks a complete formal
definition of the calculus. Section 5 gives a complete lists of proof rules currently used
by veriT. This section is probably the one of greatest utility to the reader.

1.1 Overview

veriT [4] is a CDCL(T)-based satisfiability modulo theories solver. It uses the SMT-LIB
language as input and output language and also utilizes the many-sorted classical first-
order logic defined by this language. If requested by the user, veriT outputs a proof if
it can deduce that the input problem is unsatisfiable. In proof production mode, veriT
supports the theory of uninterpreted functions, the theory of linear integer and real
arithmetic, and quantifiers.

Similar to the proofs generated by Z3, veriT’s proofs are based on the SMT-LIB
language, but are otherwise different. Proofs are not terms, but a list of indexed steps.
Steps without references are tautologies and assumptions. The last step is always the
deduction of the empty clause. Furthermore, steps can be marked as subproofs, which
are used for local assumptions and to reason about bound variables. To shorten the
proof length, veriT uses term sharing. This is implemented using the standard SMT-LIB
name annotation mechanism. Major differences to the proof format used by Z3 are the
fine-grained steps for Skolemization and the presence of steps for the manipulations of
bound variables.

In addition to this reference, the proof format used by veriT has been discussed in pub-
lications which provide valuable background information: the fundamental ideas behind
the proof format have been published in [3]; proposed rules for quantifier instantiation
can be found in [5]; and the proof rules to express reasoning typically used for processing,
such as Skolemization, renaming of variables, and other manipulations of bound variables
have been published in [1]. A complete reconstruction of the proofs generated by veriT
in Isabelle/HOL has recently been reported in [6]. Parts of this manual have been taken
from this publication.

2 Notation

veriT uses the SMT-LIB language [2] as both its input and output language. Hence, this
document builds on the concept introduced there. This includes the concrete syntax and
the multi-sorted first-order logic.

The notation used throughout this manual follows the notation of the SMT-LIB stan-
dard. To simplify the notation we will omit the sort of terms when possible. The available
sorts depend on the selected SMT-LIB theory and can also be extended by the user, but
a distinguished Bool sort is always available. We use the symbols x, y, z for variables,

2

f , g, h for functions, and P , Q for predicates, i.e., functions with result sort Bool. The
symbols r, s, t, u stand for terms. The symbols ϕ,ψ denote formulas, i.e., terms of
sort Bool. We use σ to denote substitutions and tσ to denote the application of the
substitution on the term t. To denote the substitution which maps x to t we write [t/x].
We use = to denote syntactic equality and ' to denote the sorted equality predicate.
We also use the notion of complementary literals very liberally: ϕ = ψ̄ holds if the terms
obtained after removing all leading negations from ϕ and ψ̄ are syntactically equal and
the number of leading negations is even for ϕ and odd for ψ̄, or vice versa.

A proof generated by veriT is a list of steps. A step consists of an index i ∈ N, a
formula ϕ, a rule name R taken from a set of possible rules, a possibly empty set of
premises {p1, . . . , pn} with pi ∈ N, a rule-dependent and possibly empty list of arguments
[a1, . . . , am], and a context Γ. The arguments ai are either terms or tuples (xi, ti) where
xi is a variable and ti is a term. The interpretation of the arguments is rule specific.
The context is a possible empty list [c1, . . . , cl], where ci stands for either a variable or a
variable-term tuple (xi, ti). A context denotes a substitution as described in section 3.
Every proof ends with a step with the empty clause as the step term and empty context.
The list of premises only references earlier steps, such that the proof forms a directed
acyclic graph. In section 5 we provide an overview of all proof rules used by veriT.

To mimic the actual proof text generated by veriT we will use the following notation
to denote a step:

c1, . . . , cl B i. ϕ (rule; p1, . . . , pn; a1, . . . , am)

If an element of the context ci is of the form (xi, ti), we will write xi 7→ ti. If an element
of the arguments ai is of this form we will write xi := ti. Furthermore, the proofs can
utilize Hilbert’s choice operator ε. Choice acts like a binder. The term εx.ϕ stands for a
value v, such that ϕ[v/x] is true if such a value exists. Any value is possible otherwise.
Thorough this document, we use i, j, k, l,m, n for step indices.

3 Core Concepts of the Proof Format

Assumptions. The assume rule introduces a term as an assumption. The proof starts
with a number of assume steps. Each step corresponds to an assertion. Additional
assumptions can be introduced too. In this case each assumption must be discharged
with an appropriate step. The only rule to do so is the subproof rule. From an
assumption ϕ and a formula ψ proved by intermediate steps from ϕ, the subproof step
deduces ¬ϕ ∨ ψ and discharges ϕ.

Tautologous rules and simple deduction. Most rules emitted by veriT introduce tau-
tologies. One example is the and_pos rule: ¬(ϕ1∧ϕ2∧· · ·∧ϕn)∨ϕi. Other rules operate
on only one premise. Those rules are primarily used to simplify Boolean connectives
during preprocessing. For example, the implies rule removes an implication: From
ϕ1 =⇒ ϕ2 it deduces ¬ϕ1 ∨ ϕ2.

3

Resolution. The proofs produced by veriT use a generalized propositional resolution
rule with the rule name resolution or th_resolution. Both names denote the same
rule. The difference only serves to distinguish if the rule was introduced by the SAT
solver or by a theory solver. The resolution step is purely propositional; there is currently
no notion of a unifier.

The premises of a resolution step are clauses and the conclusion is a clause that has
been derived from the premises by some binary resolution steps.

Quantifier Instantiation. To express quantifier instantiation, the rule forall_inst is
used. It produces a formula of the form (¬∀x1 . . . xn.ϕ) ∨ ϕ[t1/x1] . . . [tn/xn], where ϕ is
a term containing the free variables (xi)1≤i≤n, and ti are new variable free terms with
the same sort as xi.

The arguments of a forall_inst step are the list x1 := t1, . . . , xn := tn. While this
information can be recovered from the term, providing this information explicitly aids
reconstruction because the implicit reordering of equalities (see below) obscure which
terms have been used as instances. Existential quantifiers are handled by Skolemization.

Skolemization and other preprocessing steps. veriT uses the notion of a context to
reason about bound variables. As defined above, a context is a (possibly empty) list of
variables or variable term pairs. The context is modified like a stack: rules can either
append elements to the right of the current context or remove elements from the right.
A context Γ corresponds to a substitution σΓ. This substitution is recursively defined.
If Γ is the empty list, then σΓ is the empty substitution, i.e., the identity function. If
Γ is of the form Γ′, x then σΓ(v) = σΓ′(v) if v 6= x, otherwise σΓ(v) = x. Finally, if
Γ = Γ′, x 7→ ϕ then σΓ′,x 7→ϕ = σΓ′ ◦ [ϕ/x]. Hence, the context allows one to build a
substitution with the additional possibility to overwrite prior substitutions for a variable.

Contexts are processed step by step: If one step extends the context this new context
is used in all subsequent steps in the step list until the context is modified again. Only
a limited number of rules can be applied when the context is non-empty. All of those
rules have equalities as premises and conclusion. A step with term ϕ1 ' ϕ2 and context
Γ expresses the judgment that ϕ1σΓ = ϕ2.

One typical example for a rule with context is the sko_ex rule, which is used to express
Skolemization of an existentially quantified variable. It is a applied to a premise n with
a context that maps a variable x to the appropriate Skolem term and produces a step m
(m > n) where the veriable is quantified.

Γ, x 7→ (εx.ϕ) B n. ϕ ' ψ (...)
...

Γ B m. (∃x.ϕ) ' ψ (sko_ex; n)

Example 1. To illustrate how such a rule is applied, consider the following example taken
from [1]. Here the term ¬p(εx.¬p(x)) is Skolemized. The refl rule expresses a simple
tautology on the equality (reflexivity in this case), cong is functional congruence, and

4

sko_forall works like sko_ex, except that the choice term is εx.¬ϕ.

x 7→ (εx.¬p(x)) B 1. x' εx.¬p(x) (refl)
x 7→ (εx.¬p(x)) B 2. p(x)' p(εx.¬p(x)) (cong; 1)

B 3. (∀x.p(x))' p(εx.¬p(x)) (sko_forall; 2)
B 4. (¬∀x.p(x))' ¬p(εx.¬p(x)) (cong; 3)

Linear arithmetic. Proofs for linear arithmetic use a number of straightforward rules,
such as la_totality: t1 ≤ t2 ∨ t2 ≤ t1 and the main rule la_generic. The conclusion
of an la_generic step is a tautology of the form (¬ϕ1) ∨ (¬ϕ2) ∨ · · · ∨ (¬ϕn) where the
ϕi are linear (in)equalities. Checking the validity of this formula amounts to checking
the unsatisfiability of the system of linear equations ϕ1, ϕ2, . . . , ϕn.

Example 2. The following example is the proof generated by veriT for the unsatisfiability
of (x+ y < 1) ∨ (3 < x), x ' 2, and 0 ' y.

B 1. (3 < x) ∨ (x+ y < 1) (assume)
B 2. x ' 2 (assume)
B 3. 0 ' y (assume)
B 4. ¬(3 < x) ∨ ¬(x ' 2) (la_generic; ; 1.0, 1.0)
B 5. ¬(3 < x) (resolution; 2, 4)
B 6. x+ y < 1 (resolution; 1, 5)
B 7. ¬(x+ y < 1) ∨ ¬(x ' 2) ∨ ¬(0 ' y) (la_generic; ; 1.0, 1.0, 1.0)
B 8. ⊥ (resolution; 7, 6, 2, 3)

Implicit transformations reordering of equalities. In addition to the explicit steps,
veriT might reorder equalities, i.e. apply symmetry of the equality predicate, without
generating steps. When this happens is somewhat restricted. Equalities are only re-
ordered when the term below the equality change during proof search. One such case is
the instantiation of universally quantified variables. If the variable that appears below an
equality, then the equality might have an arbitrary order after the variable is instantiated.

4 The Concrete Syntax

The concrete text representation of the proofs generated by veriT is based on the
SMT-LIB standard. Figure 1 shows an exemplary proof as printed by veriT lightly
edited for readability. The format follows the SMT-LIB standard when possible.

Figure 2 shows the grammar of the proof text generated by veriT. It is based on the
SMT-LIB grammar, as defined in the SMT-LIB standard version 2.6 Appendix B1. The
nonterminals 〈symbol〉, 〈function_def〉, 〈sorted_var〉, and 〈term〉 are as defined in
the standard. The 〈proof_term〉 is the recursive 〈term〉 nonterminal redefined with the
additional production for the choice binder.

1Available online at: http://smtlib.cs.uiowa.edu/language.shtml

5

http://smtlib.cs.uiowa.edu/language.shtml

1 (assume h1 (not (p a)))

2 (assume h2 (forall ((z1 U)) (forall ((z2 U)) (p z2))))

3 ...

4 (anchor :step t9 :args ((:= z2 vr4)))

5 (step t9.t1 (cl (= z2 vr4)) :rule refl)

6 (step t9.t2 (cl (= (p z2) (p vr4))) :rule cong :premises (t9.t1))

7 (step t9 (cl (= (forall ((z2 U)) (p z2)) (forall ((vr4 U)) (p vr4))))

8 :rule bind)

9 ...

10 (step t14 (cl (forall ((vr5 U)) (p vr5)))

11 :rule th_resolution :premises (t11 t12 t13))

12 (step t15 (cl (or (not (forall ((vr5 U)) (p vr5))) (p a)))

13 :rule forall_inst :args ((:= vr5 a)))

14 (step t16 (cl (not (forall ((vr5 U)) (p vr5))) (p a))

15 :rule or :premises (t15))

16 (step t17 (cl) :rule resolution :premises (t16 h1 t14))

Figure 1: Example proof output. Assumptions are introduced (line 1–2); a subproof
renames bound variables (line 4–8); the proof finishes with instantiaton and
resolution steps (line 10–15)

Input problems in the SMT-LIB standard contain a list of commands that modify
the internal state of the solver. In agreement with this approach veriT’s proofs are also
formed by a list of commands. The assume command introduces a new assumption.
While this command could also be expressed using the step command with a special
rule, the special semantic of an assumption justifies the presence of a dedicated command:
assumptions are neither tautological nor derived from premises. The step command,
on the other hand, introduces a derived or tautological term. Both commands assume

and step require an index as the first argument to later refer back to it. This index
is an arbitrary SMT-LIB symbol. The only restriction is that it must be unique for
each assume and step command. The second argument is the term introduced by the
command. For a step, this term is always a clause. To express disjunctions in SMT-LIB
the or operator is used. Unfortunately, this operator needs at least two arguments and
cannot represent unary or empty clauses. To circumvent this we introduce a new cl

operator. It corresponds the standard or function extended to one argument, where it
is equal to the identity, and zero arguments, where it is equal to false. The :premises

annotation denotes the premises and is skipped if they are none. If the rule carries
arguments, the :args annotation is used to denote them.

The anchor and define-fun commands are used for subproofs and sharing, respec-
tively. The define-fun command corresponds exactly to the define-fun command of
the SMT-LIB language.

6

〈proof〉 ::= 〈proof_command〉∗
〈proof_command〉 ::= (assume 〈symbol〉 〈proof_term〉)

| (step 〈symbol〉 〈clause〉 :rule 〈symbol〉
〈step_annotation〉)

| (anchor :step 〈symbol〉)
| (anchor :step 〈symbol〉 :args 〈proof_args〉)
| (define-fun 〈function_def〉)

〈clause〉 ::= (cl 〈proof_term〉∗)
〈step_annotation〉 ::= :premises (〈symbol〉+)

| :args 〈proof_args〉
| :premises (〈symbol〉+) :args 〈proof_args〉

〈proof_args〉 ::= (〈proof_arg〉+)

〈proof_arg〉 ::= 〈symbol〉 | (〈symbol〉 〈proof_term〉)
〈proof_term〉 ::= 〈term〉 extended with

(choice (〈sorted_var〉+) 〈proof_term〉)

Figure 2: The proof grammar

4.1 Subproofs

As the name suggests, the subproof rule expresses subproofs. This is possible because
its application is restricted: the assumption used as premise for the subproof step must
be the assumption introduced last. Hence, the assume, subproof pairs are nested. The
context is manipulated in the same way: if a step pops c1, . . . , cn from a context Γ, there
is a earlier step which pushes precisely c1, . . . , cn onto the context. Since contexts can
only be manipulated by push and pop, context manipulations are also nested.

Because of this nesting, veriT uses the concept of subproofs. A subproof is started
right before an assume command or a command which pushes onto the context. We
call this point the anchor. The subproof ends with the matching subproof command
or command which pops from the context, respectively. The :step annotation of the
anchor command is used to indicate the step command which will end the subproof.
The term of this step command is the conclusion of the subproof. If the subproof uses a
context, the :args annotation of the anchor command indicates the arguments added to
the context for this subproof. In the example proof (Figure 1) a subproof starts on line
four. It ends on line seven with the bind steps which finished the proof for the renaming
of the bound variable z2 to vr4.

A further restriction applies: only the conclusion of a subproof can be used as a premise
outside of the subproof. Hence, a proof checking tool can remove the steps of the subproof
from memory after checking it.

7

4.2 Sharing and Skolem Terms

The proof output generated by veriT is generally large. One reason for this is that veriT
can store terms internally much more efficiently. By utilizing a perfect sharing data
structure, every term is stored in memory precisely once. When printing the proof this
compact storage is unfolded.

The user of veriT can optionally activate sharing2 to print common subterms only
once. This is realized using the standard naming mechanism of SMT-LIB. In the
language of SMT-LIB it is possible to annotate every term t with a name n by writing
(! t :named n) where n is a symbol. After a term is annotated with a name, the name
can be used in place of the term. This is a purely syntactical replacement.

To simplify reconstruction veriT can optionally3 define Skolem constants as functions.
If activated, this option adds a list of define-fun command to define shorthand 0-ary
functions for the (choice . . .) terms needed. Without this option, no define-fun

commands are issued and the constants are inlined.

5 List of Proof Rules

The following lists all rules produced by veriT. When n-ary operators are in the form
t1∨· · ·∨tn this corresponds to the SMT-LIB string (or t1 ... tn). Hence, we explicitly
bracket to clarify the application. To differentiate between or from cl, we use ∨̇ for the
second operator. Nevertheless, since proof steps always start with cl, we write the literal
of unit clauses directly. Furthermore, premises can be ordered arbitrarily and need not
follow the order given in the rule definition.

1. assume

B i. φ (assume)

where ϕ is equivalent to a formula asserted in the input problem.

2. true

B i. > (true)

3. false

B i. ¬⊥ (false)

4. not_not

2By using the command-line option --proof-with-sharing.
3By using the command-line option --proof-define-skolems.

8

B i. ¬(¬¬ϕ)∨̇ϕ (not_not)

5. and_pos

B i. ¬(ϕ1 ∧ · · · ∧ ϕn)∨̇ϕi (and_pos)

with 1 ≤ i ≤ n.

6. and_neg

B i. (ϕ1 ∧ · · · ∧ ϕn)∨̇(¬ϕ1)∨̇ . . . ∨̇(¬ϕn) (and_neg)

7. or_pos

B i. ¬(ϕ1 ∨ · · · ∨ ϕn)∨̇ϕ1∨̇ . . . ∨̇ϕn (or_pos)

8. or_neg

B i. (ϕ1 ∨ · · · ∨ ϕn)∨̇(¬ϕi) (or_neg)

with 1 ≤ i ≤ n.

9. xor_pos1

B i. ¬(ϕ1 xorϕ2)∨̇ϕ1∨̇ϕ2 (xor_pos1)

10. xor_pos2

B i. ¬(ϕ1 xorϕ2)∨̇(¬ϕ1)∨̇(¬ϕ2) (xor_pos2)

11. xor_neg1

B i. (ϕ1 xorϕ2)∨̇ϕ1∨̇(¬ϕ2) (xor_neg1)

12. xor_neg2

B i. (ϕ1 xorϕ2)∨̇(¬ϕ1)∨̇ϕ2 (xor_neg2)

13. implies_pos

B i. ¬(ϕ1 → ϕ2)∨̇(¬ϕ1)∨̇ϕ2 (implies_pos)

9

14. implies_neg1

B i. (ϕ1 → ϕ2)∨̇ϕ1 (implies_neg1)

15. implies_neg2

B i. (ϕ1 → ϕ2)∨̇(¬ϕ2) (implies_neg2)

16. equiv_pos1

B i. ¬(ϕ1 ↔ ϕ2)∨̇ϕ1∨̇(¬ϕ2) (equiv_pos1)

17. equiv_pos2

B i. ¬(ϕ1 ↔ ϕ2)∨̇(¬ϕ1)∨̇ϕ2 (equiv_pos2)

18. equiv_neg1

B i. ϕ1 ↔ ϕ2∨̇(¬ϕ1)∨̇(¬ϕ2) (equiv_neg1)

19. equiv_neg2

B i. ϕ1 ↔ ϕ2∨̇ϕ1∨̇ϕ2 (equiv_neg2)

20. ite_pos1

B i. ¬(iteϕ1 ϕ2 ϕ3)∨̇ϕ1∨̇ϕ3 (ite_pos1)

21. ite_pos2

B i. ¬(iteϕ1 ϕ2 ϕ3)∨̇(¬ϕ1)∨̇ϕ2 (ite_pos2)

22. ite_neg1

B i. iteϕ1 ϕ2 ϕ3∨̇ϕ1∨̇(¬ϕ3) (ite_neg1)

23. ite_neg2

B i. iteϕ1 ϕ2 ϕ3∨̇(¬ϕ1)∨̇(¬ϕ2) (ite_neg2)

10

24. eq_reflexive

B i. t ' t (eq_reflexive)

25. eq_transitive

B i. ¬(t1 ' t2)∨̇ . . . ∨̇¬(tn−1 ' tn)∨̇t1 ' tn (eq_transitive)

26. eq_congruent

B i. ¬(t1 ' u1)∨̇ . . . ∨̇¬(tn ' un)∨̇f(t1, . . . , tn) ' f(u1, . . . , un) (eq_congruent)

27. eq_congruent_pred

B i. ¬(t1 ' u1)∨̇ . . . ∨̇¬(tn ' un)∨̇P (t1, . . . , tn) '
P (u1, . . . , un)

(eq_congruent_pred)

28. distinct_elim

This rule eliminates the distinct predicate. If called with one argument this predicate always
holds:

B i. (distinct t)↔ > (distinct_elim)

If applied to terms of type Bool more than two terms can never be distinct, hence only
two cases are possible:

B i. (distinctϕ ψ)↔ ¬(ϕ↔ ψ) (distinct_elim)

and

B i. (distinctϕ1 ϕ2 ϕ3 . . .)↔ ⊥ (distinct_elim)

The general case is:

B i. (distinct t1 . . . tn)↔
∧n

i=1

∧n
j=i+1 ti 6' tj (distinct_elim)

29. la_rw_eq

B i. (t ' u) ' (t ≤ u ∧ u ≤ t) (la_rw_eq)

Remark. While the connective could be an ↔, currently an equality is used.

30. la_generic

A step of the la_generic rule represents a tautological clause of linear disequalities. It can
be checked by showing that the conjunction of the negated disequalities is unsatisfiable. After

11

the application of some strengthening rules, the resulting conjunction is unsatisfiable, even if
integer variables are assumed to be real variables.

A linear inequality is of term of the form
∑n

i=0 ci × ti + d1 ./
∑m

i=n+1 ci × ti + d2 where
./ ∈ {=, <,>,≤,≥}, where m ≥ n, ci, d1, d2 are either integer or real constants, and for
each i ci and ti have the same sort. We will write s1 ./ s2.

Let l1, . . . , ln be linear inequalities and a1, . . . , an rational numbers, then a la_generic

step has the form:

B i. ϕ1∨̇ . . . ∨̇ϕo (la_generic; ; a1, . . . , ao)

where ϕi is either ¬li or li, but never s1 ' s2.
If the current theory does not have rational numbers, then the ai are printed using integer

division. They should, nevertheless, be interpreted as rational numbers. If d1 or d2 are 0,
they might not be printed.

To check the unsatisfiability of the negation of ϕ1 ∨ · · · ∨ ϕo one performs the following
steps for each literal. For each i, let ϕ := ϕi and a := ai.

1. If ϕ = s1 > s2, then let ϕ := s1 ≤ s2. If ϕ = s1 ≥ s2, then let ϕ := s1 < s2. If
ϕ = s1 < s2, then let ϕ := s1 ≥ s2. If ϕ = s1 ≤ s2, then let ϕ := s1 > s2.

2. If ϕ = ¬(s1 ./ s2), then let ϕ := s1 ./ s2.

3. Replace ϕ by
∑n

i=0 ci × ti −
∑m

i=n+1 ci × ti ./ d where d := d2 − d1.

4. Now ϕ has the form s1 ./ d. If all variables in s1 are integer sorted: replace ./ d
according to table 1.

5. If ./ is ' replace l by
∑m

i=0 a×ci×ti ' a×d, otherwise replace it by
∑m

i=0 |a|×ci×ti '
|a| × d.

./ If d is an integer Otherwise

> ≥ d+ 1 ≥ bdc+ 1
≥ ≥ d ≥ bdc+ 1

Table 1: Strengthening rules for la_generic.

Finally, the sum of the resulting literals is trivially contradictory. The sum

o∑
k=1

mo∑
i=1

coi ∗ toi ./
o∑

k=1

dk

where cki is the constant ci of literal lk, tki is the term ti of lk, and dk is the constant d of lk.
The operator ./ is ' if all operators are ', > if all are either ' or >, and ≥ otherwise. The
ai must be sucht that the sum on the left-hand side is 0 and the right-hand side is > 0 (or
≥ 0 if ./ is >).

12

Example 30.1. A simple la_generic step in the logic LRA might look like this:

(step t10 (cl (not (> (f a) (f b))) (not (= (f a) (f b))))

:rule la_generic :args (1.0 (- 1.0)))

To verify this we have to check the insatisfiability of f(a) > f(b) ∧ f(a) = f(b) (Step
2). After step 3 we get f(a) − f(b) > 0 ∧ f(a) − f(b) = 0. Since we don’t have an
integer sort in this logic step 4 does not apply. Finally, after step 5 the conjunction is
f(a)− f(b) > 0 ∧ −f(a) + f(b) = 0. This sums to 0 > 0, which is a contradiction.

Example 30.2. The following la_generic step is from a QF_UFLIA problem:

(step t11 (cl (not (<= f3 0)) (<= (+ 1 (* 4 f3)) 1))

:rule la_generic :args (1 (div 1 4)))

After normalization we get −f3 ≥ 0 ∧ 4× f3 > 0. This time step 4 applies and we can
strengthen this to −f3 ≥ 0∧ 4× f3 ≥ 1 and after multiplication we get −f3 ≥ 0∧ f3 ≥ 1

4 .
Which sums to the contradiction 1

4 ≥ 0.

31. lia_generic

This rule is a placeholder rule for integer arithmetic solving. It takes the same form as
la_generic, without the additional arguments.

B i. ϕ1∨̇ . . . ∨̇ϕn (lia_generic)

with ϕi being linear inequalities. The disjunction ϕ1 ∨ · · · ∨ ϕn is a tautology in the theory
of linear integer arithmetic.

32. la_disequality

B i. t1 ' t2 ∨ ¬(t1 ≤ t2) ∨ ¬(t2 ≤ t1) (la_disequality)

33. la_totality

B i. t1 ≤ t2 ∨ t2 ≤ t1 (la_totality)

34. la_tautology

This rule is a linear arithmetic tautology which can be checked without sophisticated reasoning.
It has either the form:

B i. ϕ (la_tautology)

where ϕ is either a linear inequality s1 ./ s2 or ¬(s1 ./ s2). After performing step 1 to 3 of
the process for checking the la_generic the result is trivially unsatisfiable.

The second form handles bounds on linear combinations. It is binary clause:

13

B i. ϕ1 ∨ ϕ2 (la_tautology)

It can be checked by using the procedure for la_generic with while setting the arguments
to 1. Informally, the rule follows one of several cases:

• ¬(s1 ≤ d1) ∨ s1 ≤ d2 where d1 ≤ d2

• s1 ≤ d1 ∨ ¬(s1 ≤ d2) where d1 = d2

• ¬(s1 ≥ d1) ∨ s1 ≥ d2 where d1 ≥ d2

• s1 ≥ d1 ∨ ¬(s1 ≥ d2) where d1 = d2

• ¬(s1 ≤ d1) ∨ ¬(s1 ≥ d2) where d1 < d2

The inequalities s1 ./ d are are the result of applying normalization as for the rule la_-

generic.

35. forall_inst

B i. ¬(∀x1, . . . , xn.P) ∨
P [t1/x1] . . . [tn/xn]

(forall_inst; ;xk1 := tk1 , . . . , xkn := tkn)

where k1, . . . , kn is a permutation of 1, . . . , n and xi and ki have the same sort. The
arguments xki := tki are printed as (:= xki tki).

Remark. A rule simmilar to the let rule would be more appropriate. The resulting proof
would be more fine grained and this would also be an opportunity to provide a proof for the
clausification as currently done by qnt_cnf.

36. qnt_join

Γ B i. Qx1, . . . , xn.Qxn+1, . . . , xm.ϕ↔ Qxk1 , . . . , xko .ϕ (qnt_join)

where m > n, Q ∈ {∀, ∃}, k1, . . . , ko is monotonic map to 1, . . . ,m such that xk1 , . . . , xko
are pairwise distinct, and {x1, . . . , xm} = {xk1 , . . . , xko}.

37. qnt_rm_unused

Γ B i. Qx1, . . . , xn.ϕ↔ Qxk1 , . . . , xkm .ϕ (qnt_rm_unused)

where m ≤ n, Q ∈ {∀,∃} , k1, . . . , km is monotonic map to 1, . . . , n and if x ∈ {xj | j ∈
{1, . . . , n} ∧ j 6∈ {k1, . . . , km}} then x is not free in P .

38. th_resolution

This rule is the resolution of two or more clauses.

14

B i1. ϕ1
1∨̇ . . . ∨̇ϕ1

k1 (. . .)
...

B in. ϕn
1 ∨̇ . . . ∨̇ϕn

kn (. . .)
...

B j. ϕr1
s1∨̇ . . . ∨̇ϕ

rm
sm (th_resolution; i1, . . . , in)

where ϕr1
s1∨̇ . . . ∨̇ϕ

rm
sm are from ϕi

j and are the result of a chain of predicate resolution steps

on the clauses i1 to in. It is possible that m = 0, i.e. that the result is the empty clause.
This rule is only used when the resolution step is not emitted by the SAT solver. See the

equivalent resolution rule for the rule emitted by the SAT solver.

Remark. While checking this rule is NP-complete, the th_resolution-steps produced
by veriT are simple. Experience with reconstructing the step in Isabelle/HOL shows that
checking can done by naive decision procedures. The vast majority of th_resolution-steps
are binary resolution steps.

39. resolution

This rule is equivalent to the the_resolution rule, but it is emitted by the SAT solver
instead of theory reasoners. The differentiation serves only informational purpose.

40. refl

Either

Γ B j. t1 ' t2 (refl)

or

Γ B j. ϕ1 ↔ ϕ2 (refl)

where ϕ1 and ϕ2 (P1 and P2) are equal after applying the substitution induced by Γ.

41. trans

Either
Γ B i. t1 ' t2 (. . .)

...
Γ B j. t2 ' t3 (. . .)

...
Γ B k. t1 ' t3 (trans; i, j)

or

15

Γ B i. ϕ1 ↔ ϕ2 (. . .)
...

Γ B j. ϕ2 ↔ ϕ3 (. . .)
...

Γ B k. ϕ1 ↔ ϕ3 (trans; i, j)

42. cong

Either
Γ B i1. t1 ' u1 (. . .)

...
Γ B in. tn ' un (. . .)

...
Γ B j. f(t1, . . . , tn) ' f(u1, . . . , un) (cong; i1, . . . , in)

where f is an n-ary function symbol, or

Γ B i1. ϕ1 ' ψ1 (. . .)
...

Γ B in. ϕn ' ψn (. . .)
...

Γ B j. P(ϕ1, . . . , ϕn)↔ P(ψ1, . . . , ψn) (cong; i1, . . . , in)

where P is an n-ary predicate symbol.

43. and

B i. ϕ1 ∧ · · · ∧ ϕn (. . .)
...

B j. ϕi (and; i)

44. tautology

B i. ϕ1∨̇ . . . ∨̇ϕi∨̇ . . . ∨̇ϕj∨̇ . . . ∨̇ϕn (. . .)
...

B j. > (tautology; i)

and ϕi = ϕ̄j .

45. not_or

16

B i. ¬(ϕ1 ∨ · · · ∨ ϕn) (. . .)
...

B j. ¬ϕi (not_or; i)

46. or

B i. ϕ1 ∨ · · · ∨ ϕn (. . .)
...

B j. ϕ1∨̇ . . . ∨̇ϕn (or; i)

Remark. This rule deconstructs the or operator into a cl.

Example 46.1. An application of the or rule.

(step t15 (cl (or (= a b) (not (<= a b)) (not (<= b a))))

:rule la_disequality)

(step t16 (cl (= a b) (not (<= a b)) (not (<= b a)))

:rule or :premises (t15))

47. not_and

B i. ¬(ϕ1 ∧ · · · ∧ ϕn) (. . .)
...

B j. ¬ϕ1∨̇ . . . ∨̇¬ϕn (not_and; i)

48. xor1

B i. xorϕ1 ϕ2 (. . .)
...

B j. ϕ1∨̇ϕ2 (xor1; i)

49. xor2

B i. xorϕ1 ϕ2 (. . .)
...

B j. ¬ϕ1∨̇¬ϕ2 (xor2; i)

50. not_xor1

17

B i. ¬(xorϕ1 ϕ2) (. . .)
...

B j. ϕ1∨̇¬ϕ2 (not_xor1; i)

51. not_xor2

B i. ¬(xorϕ1 ϕ2) (. . .)
...

B j. ¬ϕ1∨̇ϕ2 (not_xor2; i)

52. implies

B i. ϕ1 → ϕ2 (. . .)
...

B j. ¬ϕ1∨̇ϕ2 (implies; i)

53. not_implies1

B i. ¬(ϕ1 → ϕ2) (. . .)
...

B j. ϕ1 (not_implies1; i)

54. not_implies2

B i. ¬(ϕ1 → ϕ2) (. . .)
...

B j. ¬ϕ2 (not_implies2; i)

55. equiv1

B i. ϕ1 ↔ ϕ2 (. . .)
...

B j. ¬ϕ1∨̇ϕ2 (equiv1; i)

56. equiv2

B i. ϕ1 ↔ ϕ2 (. . .)
...

B j. ϕ1∨̇¬ϕ2 (equiv2; i)

18

57. not_equiv1

B i. ¬(ϕ1 ↔ ϕ2) (. . .)
...

B j. ϕ1∨̇ϕ2 (not_equiv1; i)

58. not_equiv2

B i. ¬(ϕ1 ↔ ϕ2) (. . .)
...

B j. ¬ϕ1∨̇¬ϕ2 (not_equiv2; i)

59. ite1

B i. iteϕ1 ϕ2 ϕ3 (. . .)
...

B j. ϕ1∨̇ϕ3 (ite1; i)

60. ite2

B i. iteϕ1 ϕ2 ϕ3 (. . .)
...

B j. ¬ϕ1∨̇ϕ2 (ite2; i)

61. not_ite1

B i. ¬(iteϕ1 ϕ2 ϕ3) (. . .)
...

B j. ϕ1∨̇¬ϕ3 (not_ite1; i)

62. not_ite2

B i. ¬(iteϕ1 ϕ2 ϕ3) (. . .)
...

B j. ¬ϕ2∨̇¬ϕ2 (not_ite2; i)

63. ite_intro

Either

B i. t ' (t′ ∧ u1 ∧ · · · ∧ un) (. . .)

19

or

B i. ϕ↔ (ϕ′ ∧ u1 ∧ · · · ∧ un) (. . .)

The term t (the formula ϕ) contains the ite operator. Let s1, . . . , sn be the terms starting
with ite, i.e. si := iteψi ri r

′
i, then ui has the form:

iteψi (si ' ri) (si ' r′i)

or
iteψi (si ↔ ri) (si ↔ r′i)

if si is of sort Bool. The term t′ (the formular ϕ′) is equal to the term t (the formular ϕ′)
up to the reordering of equalities where one argument is an ite term.

Remark. This rule stems from the introduction of fresh constants for if-then-else terms
inside veriT. Internally si is a new constant symbol and the ϕ on the right side of the equality
is ϕ with the if-then-else terms replaced by the constants. Those constants are unfolded
during proof printing. Hence, the slightly strange form and the reordering of equalities.

64. contraction

B i. ϕ1∨̇ . . . ∨̇ϕn (. . .)
...

B j. ϕk1∨̇ . . . ∨̇ϕkm (contraction; i)

where m ≤ n and k1 . . . km is a monotonic map to 1 . . . n such that ϕk1 . . . ϕkm are pairwise
distinct and {ϕ1, . . . , ϕn} = {ϕk1 . . . ϕkm}. Hence, this rule remove duplicated literals.

65. connective_def

This rule is used to replace connectives by their definition. It can be one of the following:

Γ B i. ϕ1 xorϕ2 ↔ (¬ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ¬ϕ2) (connective_def)

Γ B i. ϕ1 ↔ ϕ2 ↔ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) (connective_def)

Γ B i. iteϕ1 ϕ2 ϕ3 ↔ (ϕ1 → ϕ2) ∧ (¬ϕ1 → ¬ϕ3) (connective_def)

66. ite_simplify

This rule simplifies an if-then-else term by applying equivalent transformations as long as
possible. Depending on the sort of the ite-term the rule can have one of two forms. If the
sort is Bool it has the form

Γ B i. iteϕ t1; t2 ↔ ψ (ite_simplify)

with ψ being the transformed term.
Otherwise, it has the form

20

Γ B i. iteϕ t1 t2 ' u (ite_simplify)

with u being the transformed term.
The possible transformations are:

• ite> t1 t2 ↔ t1

• ite⊥ t1 t2 ↔ t2

• iteψ t t↔ t

• ite¬ϕ t1 t2 ↔ iteϕ t2 t1

• ite> t1 t2 ↔ t1

• ite⊥ t1 t2 ↔ t2

• iteψ (iteψ t1 t2) t3 ↔ iteψ t1 t3

• iteψ t1 (iteψ t2 t3)↔ iteψ t1 t3

• iteψ > ⊥ ↔ ψ

• iteψ ⊥ > ↔ ¬ψ

• iteψ > ϕ↔ ψ ∨ ϕ

• iteψ ϕ ⊥ ↔ ψ ∧ ϕ

• iteψ ⊥ ϕ↔ ¬ψ ∧ ϕ

• iteψ ϕ > ↔ ¬ψ ∨ ϕ

67. eq_simplify

This rule simplifies an ' term by applying equivalent transformations as long as possible.
Hence, the general form is:

Γ B i. t1 ' t2 ↔ ϕ (eq_simplify)

with ψ being the transformed term.
The possible transformations are:

• t ' t↔ >

• t1 ' t2 ↔ ⊥ if t1 and t2 are different numeric constants.

• ¬(t ' t)↔ ⊥ if t is a numeric constant.

21

68. and_simplify

This rule simplifies an ∧ term by applying equivalent transformations as long as possible.
Hence, the general form is:

Γ B i. ϕ1 ∧ · · · ∧ ϕn ↔ ψ (and_simplify)

with ψ being the transformed term.
The possible transformations are:

• > ∧ · · · ∧ > ↔ >

• ϕ1 ∧ · · · ∧ ϕn ↔ ϕ1 ∧ · · · ∧ ϕn′ where the right hand side has all > literals removed.

• ϕ1 ∧ · · · ∧ ϕn ↔ ϕ1 ∧ · · · ∧ ϕn′ where the right hand side has all repeated literals
removed.

• ϕ1 ∧ · · · ∧ ⊥ ∧ · · · ∧ ϕn ↔ ⊥

• ϕ1 ∧ · · · ∧ ϕi ∧ · · · ∧ ϕj ∧ · · · ∧ ϕn ↔ ⊥ if ϕi = ϕ̄j

69. or_simplify

This rule simplifies an ∨ term by applying equivalent transformations as long as possible.
Hence, the general form is:

Γ B i. (ϕ1 ∨ · · · ∨ ϕn)↔ ψ (or_simplify)

with ψ being the transformed term.
The possible transformations are:

• ⊥ ∨ · · · ∨ ⊥ ↔ ⊥

• ϕ1 ∨ · · · ∨ ϕn ↔ ϕ1 ∨ · · · ∨ ϕn′ where the right hand side has all ⊥ literals removed.

• ϕ1 ∨ · · · ∨ ϕn ↔ ϕ1 ∨ · · · ∨ ϕn′ where the right hand side has all repeated literals
removed.

• ϕ1 ∨ · · · ∨ > ∨ · · · ∨ ϕn ↔ >

• ϕ1 ∨ · · · ∨ ϕi ∨ · · · ∨ ϕj ∨ · · · ∨ ϕn ↔ > if ϕi = ϕ̄j

70. not_simplify

This rule simplifies an ¬ term by applying equivalent transformations as long as possible.
Hence, the general form is:

Γ B i. ¬ϕ↔ ψ (not_simplify)

22

with ψ being the transformed term.
The possible transformations are:

• ¬(¬ϕ)↔ ϕ

• ¬⊥ ↔ >

• ¬> ↔ ⊥

71. implies_simplify

This rule simplifies an → term by applying equivalent transformations as long as possible.
Hence, the general form is:

Γ B i. ϕ1 → ϕ2 ↔ ψ (implies_simplify)

with ψ being the transformed term.
The possible transformations are:

• ¬ϕ1 → ¬ϕ2 ↔ ϕ2 → ϕ1

• ⊥ → ϕ↔ >

• ϕ→ >↔ >

• > → ϕ↔ ϕ

• ϕ→ ⊥↔ ¬ϕ

• ϕ→ ϕ↔ >

• ¬ϕ→ ϕ↔ ϕ

• ϕ→ ¬ϕ↔ ¬ϕ

• (ϕ1 → ϕ2)→ ϕ2 ↔ ϕ1 ∨ ϕ2

72. equiv_simplify

This rule simplifies an ↔ term by applying equivalent transformations as long as possible.
Hence, the general form is:

Γ B i. ϕ1 ↔ ϕ2 ↔ ψ (equiv_simplify)

with ψ being the transformed term.
The possible transformations are:

• (¬ϕ1 ↔ ¬ϕ2)↔ (ϕ1 ↔ ϕ2)

• (ϕ↔ ϕ)↔ >

23

• (ϕ↔ ¬ϕ)↔ ⊥

• (¬ϕ↔ ϕ)↔ ⊥

• (> ↔ ϕ)↔ ϕ

• (ϕ↔ >)↔ ϕ

• (⊥ ↔ ϕ)↔ ¬ϕ

• (ϕ↔ ⊥)↔ ¬ϕ

73. bool_simplify

This rule simplifies a boolean term by applying equivalent transformations as long as possible.
Hence, the general form is:

Γ B i. ϕ↔ ψ (bool_simplify)

with ψ being the transformed term.
The possible transformations are:

• ¬(ϕ1 → ϕ2)↔ (ϕ1 ∧ ¬ϕ2)

• ¬(ϕ1 ∨ ϕ2)↔ (¬ϕ1 ∧ ¬ϕ2)

• ¬(ϕ1 ∧ ϕ2)↔ (¬ϕ1 ∨ ¬ϕ2)

• (ϕ1 → (ϕ2 → ϕ3))↔ (ϕ1 ∧ ϕ2)→ ϕ3

• ((ϕ1 → ϕ2)→ ϕ2)↔ (ϕ1 ∨ ϕ2)

• (ϕ1 ∧ (ϕ1 → ϕ2))↔ (ϕ1 ∧ ϕ2)

• ((ϕ1 → ϕ2) ∧ ϕ1)↔ (ϕ1 ∧ ϕ2)

74. qnt_simplify

This rule simplifies a ∀ term with a constant predicate.

Γ B i. ∀x1, . . . , xn.ϕ↔ ϕ (qnt_simplify)

where ϕ is either > or ⊥.

75. div_simplify

This rule simplifies a division by applying equivalent transformations. The general form is:

Γ B i. t1
t2
' t3 (div_simplify)

24

The possible transformations are:

• t
t = 1

• t
1 = t

• t1
t2

= t3 if t1 and t2 are constants and t3 is t1 divided by t2 according to the semantic
of the current theory.

76. prod_simplify

This rule simplifies a product by applying equivalent transformations as long as possible. The
general form is:

Γ B i. t1 × · · · × tn ' u (prod_simplify)

where u is either a constant or a product.
The possible transformations are:

• t1 × · · · × tn = u where all ti are constants and u is their product.

• t1 × · · · × tn = 0 if any ti is 0.

• t1× · · ·× tn = c× tk1 × · · ·× tkn where c ist the product of the constants of t1, . . . , tn
and tk1 , . . . , tkn is t1, . . . , tn with the constants removed.

• t1 × · · · × tn = tk1 × · · · × tkn : same as above if c is 1.

77. unary_minus_simplify

This rule is either

Γ B i. −(−t) ' t (unary_minus_simplify)

or

Γ B i. −t ' u (unary_minus_simplify)

where u is the negated numerical constant t.

78. minus_simplify

This rule simplifies a subtraction by applying equivalent transformations. The general form
is:

Γ B i. t1 − t2 ' u (minus_simplify)

The possible transformations are:

• t− t = 0

25

• t1 − t2 = t3 where t1 and t2 are numerical constants and t3 is t2 subtracted from t1.

• t− 0 = t

• 0− t = −t

79. sum_simplify

This rule simplifies a sum by applying equivalent transformations as long as possible. The
general form is:

Γ B i. t1 + · · ·+ tn ' u (sum_simplify)

where u is either a constant or a product.
The possible transformations are:

• t1 + · · ·+ tn = c where all ti are constants and c is their sum.

• t1 + · · ·+ tn = c+ tk1 + · · ·+ tkn where c ist the sum of the constants of t1, . . . , tn
and tk1 , . . . , tkn is t1, . . . , tn with the constants removed.

• t1 + · · ·+ tn = tk1 + · · ·+ tkn : same as above if c is 0.

80. comp_simplify

This rule simplifies a comparison by applying equivalent transformations as long as possible.
The general form is:

Γ B i. t1 ./ tn ↔ ψ (comp_simplify)

where ./ is as for the proof rule la_generic, but never '.
The possible transformations are:

• t1 < t2 ↔ ϕ where t1 and t2 are numerical constants and ϕ is > if t1 is strictly greater
than t2 and ⊥ otherwise.

• t < t↔ ⊥

• t1 ≤ t2 ↔ ϕ where t1 and t2 are numerical constants and ϕ is > if t1 is greater than
t2 or equal and ⊥ otherwise.

• t ≤ t↔ >

• t1 ≥ t2 ↔ t2 ≤ t1

• t1 < t2 ↔ ¬(t2 ≤ t1)

• t1 > t2 ↔ ¬(t1 ≤ t2)

26

81. nary_elim

This rule replaces n-ary operators with their equivalent application of the binary operator. It
is never applied to ∧ or ∨.

Thre cases are possible. If the operator ◦ is left associative, then the rule has the form

Γ B i. ©n
i=1ti ↔ (. . . (t1 ◦ t2) ◦ t3) ◦ . . . tn) (nary_elim)

If the operator ◦ is right associative, then the rule has the form

Γ B i. ©n
i=1ti ↔ (t1 ◦ · · · ◦ (tn−2 ◦ (tn−1 ◦ tn) . . .) (nary_elim)

If the operator is chainable, then it has the form

Γ B i. ©n
i=1ti ↔ (t1 ◦ t2) ∧ (t2 ◦ t3) ∧ · · · ∧ (tn−1 ◦ tn) (nary_elim)

82. ac_simp

This rule simplifies nested occurences of ∨ or ∧:

Γ B i. ψ ↔ ϕ1 ◦ · · · ◦ ϕn (ac_simp)

where ◦ ∈ {∨,∧} and ψ is a nested application of ◦. The literals ϕi are literals of the
flattening of ψ with duplicates removed.

83. bfun_elim

B i. ψ (. . .)
...

B j. ϕ (bfun_elim; i)

The formula ϕ is ψ after boolean functions have been simplified. This happens in a two
step process. Both steps recursively iterate over ψ. The first step expands quantified variable
of type Bool. Hence, ∃x.t becomes t[⊥/x] ∨ t[>/x] and ∀x.t becomes t[⊥/x] ∧ t[>/x]. If
n variables of sort Bool appear in a quantifier, the disjunction (conjunction) has 2n terms.
Each term replaces the variables in t according to the bits of a number which is increased by
one for each subsequent term starting from zero. The left-most variable corresponds to the
least significant bit.

The second step expands function argument of boolean types by introducing appropriate
if-then-else terms. For example, consider f(x, P, y) where P is some formula. Then we
replace this term by iteP f(x,>, y) f(x,⊥, y). If the argument is already the constant >
or ⊥ it is ignored.

84. deep_skolemize

This rule is only emitted when the option --enable-deep-skolem is given. This option is
experimental and should not be used.

85. qnt_cnf

27

B i. ¬(∀x1, . . . , xn.ϕ) ∨ ∀xk1 , . . . , xkm .ϕ′ (qnt_cnf)

This is a placeholder rule for clausification of a term under a universal quantifier. This is
used by conflicting instantiation. ϕ′ is one of the clause of the clause normal form of ϕ. The
variables xk1 , . . . , xkm are a permutation of x1, . . . , xn plus additional variables added by
prenexing ϕ. Normalization is performed in two phases. First, the negative normal form is
formed, then the result is prenexed. The result of the first step is Φ(ϕ, 1) where:

Φ(¬ϕ, 1) := Φ(ϕ, 0)

Φ(¬ϕ, 0) := Φ(ϕ, 1)

Φ(ϕ1 ∨ · · · ∨ ϕn, 1) := Φ(ϕ1, 1) ∨ · · · ∨ Φ(ϕn, 1)

Φ(ϕ1 ∧ · · · ∧ ϕn, 1) := Φ(ϕ1, 1) ∧ · · · ∧ Φ(ϕn, 1)

Φ(ϕ1 ∨ · · · ∨ ϕn, 0) := Φ(ϕ1, 0) ∧ · · · ∧ Φ(ϕn, 0)

Φ(ϕ1 ∧ · · · ∧ ϕn, 0) := Φ(ϕ1, 0) ∨ · · · ∨ Φ(ϕn, 0)

Φ(ϕ1 → ϕ2, 1) := (Φ(ϕ1, 0) ∨ Φ(ϕ2, 1)) ∧ (Φ(ϕ2, 0) ∨ Φ(ϕ1, 1))

Φ(ϕ1 → ϕ2, 0) := (Φ(ϕ1, 1) ∧ Φ(ϕ2, 0)) ∨ (Φ(ϕ2, 1) ∧ Φ(ϕ1, 0))

Φ(iteϕ1 ϕ2 ϕ3, 1) := (Φ(ϕ1, 0) ∨ Φ(ϕ2, 1)) ∧ (Φ(ϕ1, 1) ∨ Φ(ϕ3, 1))

Φ(iteϕ1 ϕ2 ϕ3, 0) := (Φ(ϕ1, 1) ∧ Φ(ϕ2, 0)) ∨ (Φ(ϕ1, 0) ∧ Φ(ϕ3, 0))

Φ(∀x1, . . . , xn.ϕ, 1) := ∀x1, . . . , xn.Φ(ϕ, 1)

Φ(∃x1, . . . , xn.ϕ, 1) := ∃x1, . . . , xn.Φ(ϕ, 1)

Φ(∀x1, . . . , xn.ϕ, 0) := ∃x1, . . . , xn.Φ(ϕ, 0)

Φ(∃x1, . . . , xn.ϕ, 0) := ∀x1, . . . , xn.Φ(ϕ, 0)

Φ(ϕ, 1) := ϕ

Φ(ϕ, 0) := ¬ϕ

86. subproof

The subproof rule completes a subproof and discharges local assumptions. Every subproof
starts with some input steps. The last step of the subproof is the conclusion.

B i1. ψ1 (input)
...

B in. ψn (input)
...

B j. ϕ (. . .)

B k. ¬ψ1∨̇ . . . ∨̇¬ψn∨̇ϕ (subproof)

87. bind

28

The bind rule is used to rename bound variables.
...

Γ, y1, . . . , yn, x1 7→ y1, . . . , xn 7→ yn, B j. ϕ↔ ϕ′ (. . .)

Γ B k. ∀x1, . . . , xn.ϕ↔ ∀y1, . . . , yn.ϕ
′ (bind)

where the variables y1, . . . , yn is not free in ∀x1, . . . , xn.ϕ.

88. let

This rule eliminats let. It has the form

Γ B i1. t1 ' s1 (. . .)
...

Γ B in. tn ' sn (. . .)
...

...
Γ, x1 7→ s1, . . . , xn 7→ sn, B j. u ' u′ (. . .)

Γ B k. (letx1 := t1, . . . , xn := tn.u) ' u′ (let; i1 . . . in)

where ' is replaced by ↔ where necessary.
If for ti ' si the ti and si are syntactically equal, the premise is skipped.

89. onepoint

The onepoint rule is the “one-point-rule”. That is: it eliminates quantified variables that
can only have one value.

...
Γ, xk1 , . . . , xkm , xj1 7→ tj1 , . . . , xjo 7→ tjo , B j. ϕ↔ ϕ′ (. . .)

Γ B k. Qx1, . . . , xn.ϕ↔ Qxk1 , . . . , xkm .ϕ
′ (onepoint)

where Q ∈ {∀,∃}, n = m+ o, k1, . . . , km and j1, . . . , jo are monotone mappings to 1, . . . , n,
and no xki appears in xj1 , . . . , xjo .

The terms tj1 , . . . , tjo are the points of the variables xj1 , . . . , xjo . Points are defined by
equalities xi ' ti with positive polarity in the term ϕ.

Remark. Since an eliminated variable xi might appear free in a term tj , it is necessary to
replace xi with ti inside tj . While this substitution is performed correctly, the proof for it is
currently missing.

Example 89.1. An applichtion of the onepoint rule on the term ∀x, y. x ' y → f(x)∧f(y)
look like this:

(anchor :step t3 :args ((:= y x)))

(step t3.t1 (cl (= x y)) :rule refl)

29

(step t3.t2 (cl (= (= x y) (= x x)))

:rule cong :premises (t3.t1))

(step t3.t3 (cl (= x y)) :rule refl)

(step t3.t4 (cl (= (f y) (f x)))

:rule cong :premises (t3.t3))

(step t3.t5 (cl (= (and (f x) (f y)) (and (f x) (f x))))

:rule cong :premises (t3.t4))

(step t3.t6 (cl (=

(=> (= x y) (and (f x) (f y)))

(=> (= x x) (and (f x) (f x)))))

:rule cong :premises (t3.t2 t3.t5))

(step t3 (cl (=

(forall ((x S) (y S)) (=> (= x y) (and (f x) (f y))))

(forall ((x S)) (=> (= x x) (and (f x) (f x))))))

:rule qnt_simplify)

90. sko_ex

The sko_ex rule skolemizes existential quantifiers.

...
Γ, x1 7→ (εx1.ϕ), . . . , xn 7→ (εxn.ϕ), B j. ϕ↔ ψ (. . .)

Γ B k. ∃x1, . . . , xn.ϕ↔ ψ (sko_ex)

91. sko_forall

The sko_forall rule skolemizes universal quantifiers.

...
Γ, x1 7→ (εx1.¬ϕ), . . . , xn 7→ (εxn.¬ϕ), B j. ϕ↔ ψ (. . .)

Γ B k. ∀x1, . . . , xn.ϕ↔ ψ (sko_forall)

References

[1] Barbosa, H., Blanchette, J. C., Fleury, M., and Fontaine, P.
Scalable fine-grained proofs for formula processing. Journal of Automated Reasoning
(2019).

[2] Barrett, C., Fontaine, P., and Tinelli , C. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[3] Besson, F., Fontaine, P., and Théry, L. A flexible proof format for
SMT: A proposal. In PxTP 2011 (2011), P. Fontaine and A. Stump, Eds., pp. 15–26.

30

www.SMT-LIB.org

[4] Bouton, T., de Oliveira, D. C. B., Déharbe, D., and Fontaine,
P. veriT: An open, trustable and efficient SMT-solver. In CADE 2009 (2009), R. A.
Schmidt, Ed., vol. 5663 of LNCS, Springer, pp. 151–156.

[5] Déharbe, D., Fontaine, P., and Woltzenlogel Paleo, B. Quanti-
fier inference rules for SMT proofs. In PxTP 2011 (2011), P. Fontaine and A. Stump,
Eds., pp. 33–39.

[6] Fleury, M., and Schurr, H.-J. Reconstructing veriT proofs in Is-
abelle/HOL. In Proceedings Sixth Workshop on Proof eXchange for Theorem Proving,
Natal, Brazil, August 26, 2019 (2019), G. Reis and H. Barbosa, Eds., vol. 301 of Elec-
tronic Proceedings in Theoretical Computer Science, Open Publishing Association,
pp. 36–50.

31

	Introduction
	Overview

	Notation
	Core Concepts of the Proof Format
	The Concrete Syntax
	Subproofs
	Sharing and Skolem Terms

	List of Proof Rules

